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Abstract—Given the extent to which machine learning algo-
rithms have come to characterize lives, both on a daily and long-
scale basis, the study of their ingrained biases is much in order.
Many tools have emerged to understand such biases, both those
that explicitly look at the underlying classifier code (white-box)
and those that are agnostic thereof (black-box). White-box tools
can provide greater insight, but are typically limited in the types
of models they can analyze. A new tool, FairSquare, provides
a method of applying white-box techniques to more complex
models. However, since FairSquare requires a new classifier
syntax and knowledge of an underlying population model, there
was much left to be desired as an end-user.

We present a tool, FairTear, which provides a clean UI through
which end users can feed in their classifier and view its analysis
result from the FairSquare tool. Our tool automates both the
process of generating the population model and the process of
converting a classifier to the FairSquare syntax. In turn, the user
is fully abstracted from the FairSquare back-end, allowing them
to determine the fairness of his algorithm without any additional
knowledge than what is contained in their code.

FairTear is capable of making use of nearly all the supported
FairSquare functionality, supporting multi-level conditioning of
population model features and different feature distributions
(Gaussian and multi-step uniform). FairTear also integrates
with the popular scikit-learn Python machine learning package,
supporting several of its classifiers (decision trees, SVMs, and
neural networks) in addition to additional preprocessing steps
(StandardScaler). In doing so, we hope to allow a variety of end-
users, from academia and industry alike, to take advantage of
our system in real-world machine learning pipelines.

Tests revealed full automation on all ends (i.e. supporting
each of the classifiers referenced above), with fairness results
being displayed on the front-end and an appropriate classifier
decomposition visible on the back-end. In line with that, we
considered further extensions to both our tool and FairSquare.
These largely revolve around supporting a greater extent of the
sklearn library, including additional distributions, preprocessing
features, and classifiers.

I. INTRODUCTION

With the introduction of machine learning algorithms to
mainstream applications, the issues of inherent unfairness and
biases arises as a significant issue. Machine learning has grown
into positions in which they are being used to decide moments
in people’s lives, ranging from major to seemingly minute,
such as deciding from whether they will be given bail to their
online shopping experiences [2] [4]. It, therefore, stands to
reason that steps should be taken towards the ends of mitigating
issues that may arise as a result of biases in such algorithms,
beginning with initially detection.

Another critical point is the adoption of such systems.
With the recent surge criticisms regarding online algorithms,

such as Facebook’s “echo-chamber” news feed, people have
become more aware and skeptical of their use. (“Understanding
the reasons behind predictions is, however, quite important
in assessing trust” [7]) Were it possible to automate the
detection and analysis of fairness of an algorithm, the process
of instating a corresponding legislative department to ensure
such fairness would be much more streamlined.

This “detection” of bias, however, is ill-defined. Being of a
nascent research field, the ML bias community has separated
into studying distinct topics, from understanding theoretical
incongruities of fairness metrics to using publicly available
data as proxies to sensitive attributes [2] [3]. Despite this
branching, one of the key themes through all of studies is the
ambiguity of the notion of “fairness.” No one metric clearly or
universally captures the seemingly natural notion of “fairness.”
Two of the main distinctions between such metrics is whether
they relate to group fairness or individual fairness. Specifically,
“individual fairness... dictates that similar inputs must result in
similar outputs; and group fairness... dictates that a particular
subset of inputs must have a similar aggregate output to the
whole” [1]. In line with that, tools have been developed to
allow researchers and developers to not only automate the
testing of fairness within their algorithm, but further allow
them to define the metric of interest in ascribing a fairness
classification.

In particular, such tools often focus on one of two main
“forms” of explanation: one focusing on overall models, the
other on individual decisions. The former seeks to obtain
a high-level, macroscopic view of the model, whereas the
latter seeks to obtain a low-level, microscopic view. As stated
in the de-facto paper on interpretability, these were framed
respectively as seeking “transparency, i.e. how does the model
work?” and “post-hoc explanations, i.e. what else can the
model tell me?” [5] The use cases of each vary widely, with
the former largely being the concern of the end developers
of the model (i.e. for purposes of debugging) and the latter
for end users (i.e. for explaining to them the steps that were
followed in reaching the final conclusion).

In line with that, tools have emerged in two main forms:
black-box and white-box, which largely align with the dis-
tinction made by Lipton in his paper. These are named based
on the scope of information available to the algorithm. In
particular, the former seeks to understand bias through analysis
of algorithms without access to the underlying code, whereas
the latter has access to some underlying structure. One key
advantage of black-box tools is that they can be applied
without regards to the underlying development framework. For
example, a recent research effort developed “LIME, a novel
explanation technique that explains the predictions of any



FAIRTEAR: AUTOMATED PROBABILISTIC ANALYSIS ON DATASET MODELS 2

classifier in an interpretable and faithful manner, by learning
an interpretable model locally around the prediction...LIME
samples instances, gets predictions using f , and weighs them
by the proximity to the instance” [7]. In other words, LIME
relies on the principal of continuity, where the general behavior
of a classifier can be generally determined by finding its
behavior locally on specific features. That is to say, were a
classifier given an image of a cat, we would expect its output
to remain largely unchanged given ≤ 5% of the input pixels
were altered.

Given that this black-box technique is universally applicable,
insight can be gained about where biases are by highlighting
the most pivotal features in making the final decision. This
procedure, by which the essential features in making classifica-
tions is made explicit, is what has largely come to characterize
black-box interpretability models. An example of LIME’s use
was in an image classification task, where the researchers were
able to identify the pieces of image that were most critical
in classifying it as particular categories, i.e. “Electric Guitar”
or “Labrador.” Another tool, similarly black-box in nature, is
“Gradient-weighted Class Activation Mapping (Grad-CAM),
[which] uses the gradients of any target concept (say logits for
‘dog’ or even a caption), flowing into the final convolutional
layer to produce a coarse localization map highlighting the
important regions in the image for predicting the concept” [8].

Unfortunately, such tools have limitations. First, they are
developed with a specific notion of “fairness” in mind. The
two examples previously discussed primarily accomplished
their goals by highlighting parts of the data most important to
the classification. In doing so, it becomes straightforward for
developers to qualitatively analyze the fairness, but making a
quantitative statement of fairness is difficult to achieve using
such means. White-box methods, however, fulfill these two
major voids of interest that are not served by black-box tools.
They are able to capture different notions of fairness and
make quantifiable assessments of fairness. As a result, more
white-box tools have begun to emerge. Seeing that the main
advantage of black-box methods is their universal applicability,
a universal white-box method would prove useful.

One such tool that has recently emerged is FairSquare. This
tool aims to allow people to “use it to verify a class of fairness
properties for a broad spectrum of decision-making programs
generated from real-world datasets” [1]. In fact, while this
tool was not the first of its type, it is more capable than
those previously developed, due to the underlying method
employed for estimating probabilities and for performing nu-
merical integration. Previous tools against which FairSquare
was compared, such as PSI, did not perform as well since many
terminated without an answer [6]. The main reason behind
the lack of termination was its seeking of “exact inference
in probabilistic programs with both continuous and discrete
random variables” [6]. While this would presumably extend to
the optimal point of verification, much of its applications are
restricted to toy problems lacking in significant complexity.
The approximation technique employed in FairSquare, using
a combination of forming precise decision boundaries coupled
with SMT solvers, allowed for handling a significantly more
complex set of problems, despite sacrificing a fraction of

accuracy. For this reason, it was of interest to extend this
particular tool over others, though the system developed herein
was designed in a modular fashion so as to allow extensions
beyond FairSquare.

As for the specific extensions considered herein, we con-
sider the primary objective cited by the FairSquare authors
themselves: “We envision a future in which those who employ
algorithmic decision-making in sensitive domains are required
to prove fairness of their processes. Towards this vision,
our goal in this paper is to develop an automated technique
that can prove fairness properties of programs” [1]. Though
FairSquare is significantly more automated than any of its
manual counterparts, it still requires significant manual work
to compile and run a program in its custom language. The
pipeline of FairSquare can be broken into two distinct steps:
analyzing the population models of underlying model variables
and combining it with the classifier. In order to be available for
analysis by FairSquare, both the model and classifier must be
expressed as a special .fr code format with a custom Python-
like syntax.

It, therefore, came to our attention that two major substeps
within this pipeline could be automated to make the tool easier
to use:
• Curating a population model: Users often do not have

the population model on-hand while developing their
ML pipelines. In particular, the framing of FairSquare
seems to cater to a modelling approach to ML as
opposed to the discriminatory approach that has now
taken hold of a majority of the community. In other
words, it is no longer the responsibility of the developers
or researchers themselves to come up with the relations
between input features: this has now been deferred to
the algorithms. In a similar manner, it was of interest to
push the burden of coming up with population models
from the developers to the algorithms.

• Syntactically framing the models as an .fr file:
Similarly, it is poor UX to necessitate a completely new
framework to be used just for one piece of functionality.
For this reason, while we rely on the .fr backend, this
will be abstracted away from the user, making it so that
they can easily use the tool with existing classifiers.

In summary, the primary goal was to develop a better
UX to encourage algorithm developers to make better use
of FairSquare. One of the authors’ primary objectives in
developing FairSquare is “a future in which those who em-
ploy algorithmic decision-making in sensitive domains are
required to prove fairness of their processes” [1]. In line with
accomplishing that goal, we envision this tool as having as
simple an interface, so as to pose no significant upfront cost
(in terms of developing time) for end users. To those ends,
we have developed and deployed the FairTear tool, which
has been open-sourced and is available at: https://github.com/
yashpatel5400/fairtear, appropriately named for being able
to tear apart input datasets and classifiers to calculate and
determine their paired fairness. The paper is organized as
follows:
• Implementation Backend: We begin by describing the
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Fig. 1. The overall FairTear pipeline can be broken into three components:
(1: Blue) Dataset modelling is the step that takes the features and constructs
parameterized models from them; (2: Red) Classifier decomposition takes
the serialized classifier and targets to construct a classifier in the standard
“decision-tree” like format desired by FairSquare; and (3: Green) Combines
the different attributes/targets, population model, and compiled classifier and
outputs the .fr file. This is finally fed into FairSquare (not considered in the
pipeline), from which we obtain our final result.

details of how the back-end system functions, including
how the dataset modelling, classifier decomposition, and
overall fairness pipeline steps were automated. We then
describe how these were integrated into a custom user
interface through which the FairTear system can be used
via a web browser.

• Results: We go through various outputs that were com-
puted using the FairTear pipeline.

• Discussion: Going through the results, we discuss what
they demonstrate about the current abilities and limita-
tions of the deployed system.

• Future Work: We discuss further extensions that can
be implemented on top of the current version to further
encourage adoption by the mainstream.

II. IMPLEMENTATION

The implementation details, as elaborated in Figure 1, are
separated into separate sections, in which further elaboration
is provided for each step. These include mathematical back-
ground/explanation coupled with some important implemen-
tation details. What is additionally important to note is the
modularity of the overall system, where the population model
and classifier decomposition do not directly rely on FairSquare
for their functionality. This allows FairTear to be easily adapted
to work with new analysis tools similar to FairSquare.

A. Dataset Modelling
The overall objective of dataset modelling was to create an

end-to-end pipeline taking the dataset in as input and producing
the corresponding population model as its output. Looking
at an example output provided in FairSquare, it becomes
evident that there arise many problems beyond independently
modelling each of the features in the dataset.

In the following section, we consider the points outlined in
Figure 2. We begin by discussing the simplest version of the
population model, and then use this to discuss how following
steps build upon this algorithm, in the following order:

Fig. 2. Example population model that was analyzed by FairSquare. Points
to note are the partitioning of the feature space by conditionals (referred to
simply as “partitioning” elsewhere if not ambiguous), ability to have arbitrarily
many levels of conditionals, and presence of two distribution types (Gaussian
and step).

• Feature space partitioning (single-level)
• Feature space partitioning (multi-level)
• Handling multiple distribution types
1) Single-Level Partitioning: We begin with single-level

partitioning of the feature space. What is meant by “single-
level” is that there is simply a conditional (i.e. x < A) and
its complement (x ≥ A). In the multi-level expansion we later
consider, this is extended to arbitrary numbers of partitions,
i.e. we can have [x < A0, A0 ≥ x < A1, ..., An ≥ x] for
arbitrarily large n. Further, we assume that the distributions
for all variables are Gaussian, allowing us to take advantage
of Gaussian independence.

Having prefaced the partitioning, we now turn to the mate-
rial at hand. First, we establish notation:
• D = [x1, x2, ..., xm]: Input dataset, consisting of indi-

vidual data points xi
• f1, f2, ..., fn: Features (i.e. income, height, etc...). Of

note is that these are the columns of the transpose of
D, i.e. DT = [f1, f2, ...fn]

• µfi , σfi are respectively the mean and standard deviation
of fi

It comes to note that there are now three main problems to
resolve:

1) Determine whether to partition one variable on another
2) (If so) Determine what value to use as the partitioning

value (threshold)
These two problems are, in fact, quite related. For the first,

we refer to a method that is typically employed in decision
trees. First, we fix a given feature fi. The partitioning values
we will consider for fi will be:

θ = [µfi − σfi , µfi − σfi/2, µfi , µfi + σfi/2, µfi + σfi ]

Note that these were chosen arbitrarily with the option of
being able to extend this range. Fix any one of these paritioning
values and denote it θk (for threshold). These were chosen to
balance the time necessary for computation while maintaining
a high level of accuracy. Returning to the matter at hand,
by “partitioning values,” we mean the thresholds considered
for conditioning, i.e. having A by the “partitioning value” on



FAIRTEAR: AUTOMATED PROBABILISTIC ANALYSIS ON DATASET MODELS 4

feature fi would entail having (in the final .fr file) to have
something of the form:

i f f i < A:
. . .

e l s e :
. . .

We then consider each of the features fj for j > i1. For
any pair of fi, fj , partition fj into the two sets corresponding
to the fi threshold. That is, split fj into fj1 , fj2 where fj1 is
the entries for which fi ≤ θk and fj2 for fi > θk.

From these sets, we now calculate the entropy and see
whether a sufficient information gain was achieved to warrant
making a partition. In other words, we see the information
gained by making a partition of some fi on another fj
to determine whether to partition or not. Since these are
datapoints coming from a discrete dataset, we calculate entropy
using a “binning” method.

As a brief aside, this procedure proceeds as follows. For
some set X = [x1, x2, ..., xn], to calculate its entropy, par-
tition the set into k bins (split evenly across the dataset
range), for some fixed k2. These datasets each contain some
[`1, `2, ...`k] elements in them, where

∑
i `i = n. From there,

we can approximate the probabilities as [p1, p2, ..., pk], where
each pi = `i/n. Thus,

∑
i pi = 1. From here, we can

employ the standard entropy calculation, which proceeds as∑
i pi log2(pi).

Algorithm 1 Binned entropy calculation used to calculate
information gain and, therefore, whether or not partitioning
should be performed. Note that X refers to a set that is passed
in.

1: procedure BINNEDENTROPY(X)
2: k ← 25
3: partitions← X partitioned into k bins
4: sizes← sizes of the partitions
5: probs← sizes/N
6: return

∑
i (probsi log2(probsi))

To finally determine whether or not the information gain was
sufficient, we calculate the pre- and post-partitioned entropies.
The former is simply Ebefore := BinnedEntropy(fj)
whereas the latter is a weighted sum of the partitioned
sets, namely based on their sizes. Denote N1 := |fj1 |,
N2 := |fj2 | and similarly E1 := BinnedEntropy(fj1), E2 :=
BinnedEntropy(fj2):

Eafter :=
1

N1 +N2
(N1 · E1 +N2 · E2)

Information gain is defined as IG := Eafter − Ebefore.
We now consider an arbitrary threshold parameter (γ for

1Note that, the reason we do not choose to do each of the other j is because
we want to avoid repeating work. It follows that, were fj a good partitioning
variable for fi, the opposite would also follow, meaning this partition would
have been established earlier in the algorithm

2For our purposes, the implementation had k = 25. For a sufficiently large
dataset, this seems to work appropriately, but a smaller dataset may have
several empty bins, resulting in issues further down the calculation

Information Gain). For our purposes we chose γ = .125
empirically. If this IG > γ, we consider this a valid partition,
i.e. one that will potentially be made. Having determined
the information gain for this θk partition value, repeat for
each of the other θk and determine which has the maximum
information gain. Make a partition on the threshold that results
in the maximum information gain. If, however, no information
gain exceeds γ, we will choose to withhold, saying it is instead
better to treat the two variables as independent of one another.
Thus, the algorithm can be summarized as follows:

Algorithm 2 Partitioning algorithm employed to determine,
given two feature sets fi, fj , whether a partition is advanta-
geous and, if so, what the optimal choice of a threshold is.
Note that we use γ = .125 below, although this choice is
arbitrary. It is also an implementation detail as to return just
the threshold vs. the threshold and partitions (we chose latter
to avoid repeated work).

1: procedure PARTITION(fi, fj )
2: IGbest ← −∞
3: θbest ← None
4: partitionbest ← None
5: γ ← .125
6: θ ← [µfi−σfi , µfi−σfi/2, µfi , µfi +σfi/2, µfi +σfi ]
7: for k = 1 : 5 do
8: fj1 ← [], fj2 ← []
9: for ` = 1 : n do

10: if fi[`] ≤ θk then
11: fj1 .append(fj [`])
12: else
13: fj2 .append(fj [`])

14: N1 ← length(fj1)
15: N2 ← length(fj2)
16: Eold ← BinnedEntropy(fj)
17: E1 ← BinnedEntropy(fj1)
18: E2 ← BinnedEntropy(fj2)
19: Enew ← 1/(N1 +N2) (N1 ∗ E1 +N2 ∗ E2)
20: IG← Enew − Eold

21: if IG > γ and IG > BestIG then
22: IGbest ← IG
23: θbest ← θ
24: partitionbest ← (fj1 , fj2)

return θbest, partitionbest

Note that there are also further details involved in the
algorithm, i.e. disregarding partitions that result in one of the
two sets (i.e. fj1 or fj2 ) being too small.

2) Multi-Level Partitioning: After this single-level partition-
ing has been employed, the natural extension is determine
the extension to multi-level partitioning, in which we allow
for several partitions to employed on the same variable. In
fact, this extension is a very natural one from the single-
level implementation. In particular, we effectively recursively
apply the above partitioning algorithm indefinitely until no
information gain is made that exceeds the threshold set (same
threshold γ employed above). While we say “indefinitely,”
for sake of termination, we have a maximum recursion limit
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(which we denote ρmax), such that the algorithm will auto-
matically terminate after this max number of levels has been
reached. Once again, empirically this was determined/set to be
ρmax = 5.

At each step of the partitioning, determine the partition
from current set of partitions (of fj) that has the max entropy
(initially this will just be the fj itself), which we denote as
fk. Take the values of fi corresponding to this fk. Namely,
fk will be some subset of fj that runs through a subset of
its indices, I ⊂ [1 : n]. Consider the relevant subset of fi
as those indexed by I , and denote this f`. That is to say,
f` := fi[I]. Now take these two sets, and run the previously
ascribed partitioning algorithm on them. Namely, determine
the result of Partition(fk, f`). If it is the case this returns
empty (None), terminate. Otherwise, replace the entries in
the set with the new partition and recur. This is summarized
in the following algorithm:

Algorithm 3 Multi-level partitioning algorithm employed to
determine, given two feature sets fi, fj , the best number of
partitions (ranges from 0..5) and best choices for said number.
Note that, for clarity, we assume the standard Partition(fi, fj)
algorithm to return both the threshold and partitions.

1: procedure MULTIPARTITION(fi, fj )
2: ρmax ← 5
3: partitions← [fj ]
4: Θ← []
5: for q = 1 : ρmax do
6: Emin ← −∞
7: fk ← None
8: for i = 1 : len(partitions) do
9: E ← BinnedEntropy(partitions[i])

10: if E < Emin then
11: Emin = E
12: fk ← partitions[i]

13: f` ← fi entries for fk
14: θ, partitionbest ← Partition(f`, fk)
15: if partitionbest is not None then
16: insert θ at i in Θ
17: partitions[i] = partitionbest
18: else
19: Break

return Θ, partitions

Thus, the multi-level extension is not much more layered
on the previous implementation described.

3) Handling Multiple Distributions: Multiple distributions is
independent of the implementations deployed above. Namely,
we perform the fits after partitioning the data. That is to say,
once the data has been separated into different sets, we can
individually model each. FairSquare currently supports two
types of distributions: Gaussian (normal) and step (extension
of uniform). The step distributions are extensions of uniform,
in that they are of the form [(step1, p1), ..., (stepk, pk)], where
each pi is the probability of falling in stepi. We, of course,
need

∑
i pi = 1, from which the distribution is constructed.

For these, we made use of the Kolmogorov-Smirnov (KS)
test, which is a metric of goodness of fit, determining the

Fig. 3. Example classifier that was analyzed by FairSquare. What is critical to
observe is the structure of the overall program, where there are typically some
hybrid variables defined in the beginning followed subsequently by branching
decisions.

“distance” between two distributions. This only necessitates
having the CDF of the distribution at hand. Thus, we consid-
ered the best Gaussian fit (with well-known fitting methods)
and the best partition steps of data (for the number of partitions
ranging from 1 : 5) for the step fit, found their corresponding
KS distances, and took the minimum of the two. In this way,
the fits for each of the features were established, completing
the population model generation.

B. Classifier Decomposition
In addition to the population, the classifier too had to be

automatically decomposed to create an end-to-end pipeline.
For this first iteration of the system, we support decision trees,
SVMs (support-vector machines), and neural networks, all of
which must be from the standard sklearn Python package.
While we investigate each of these three classifier decompo-
sitions separately more in depth in the following subsections,
we wish to briefly establish some points ahead of the fact that
relate to all of these, namely with reference to 3. Specifically,
the form of the final .fr output (i.e. those that FairSquare
natively handles) is of branching conditionals defined over
the space of the input features. In other words, the classifier
must be decomposed into a level-by-level constraining set
ending in the classification, much in the way a decision tree is
structured, from which FairSquare can do its decision boundary
calculations/analysis.

To this end, the problem of “classifier decomposition”
essentially boils down to determining how a classifier can be
expressed fully in terms of such hybrid decision boundaries.
We expound on this very point for the three cases at hand in
the following sections.

1) Decision Trees: Decision tree classifiers learn a chain of
nested decision rules to classify each data point. We can rep-
resent this in FairSquare using nested branching conditionals.
This results in a simple, interpretable program output, from
which the structure of the classifier can be seen at a glance.
This type of classifier is a natural fit for the branching structure
of a FairSquare program. In addition, decision trees are also a
powerful classifier that works well for many problems, making
it useful to support in our system.
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Unfortunately, the program produced from a Decision-
TreeClassifier can be arbitrarily long depending on the com-
plexity of the trained classifier, with an asymptotic complexity
linear in the size of the input dataset. As a result, if the
classifier is too complex, the compiled program may take
prohibitively long to evaluate in FairSquare. By default, sklearn
builds a tree with only pure nodes, resulting in perfect train-
ing accuracy but a highly complex and overfit classifier. To
keep the complexity low, it is important to train the deci-
sion tree with reasonable terminating conditions for the tree.
Choosing appropriate max_depth, min_samples_split,
and/or min_samples_leaf options when creating the De-
cisionTreeClassifier will help produce a shorter program.

We implemented support for compiling a trained Decision-
TreeClassifier from the sklearn package. The trained clas-
sifier contains an internal Tree structure which represents
the decision rules used to classify examples. We recursively
navigate through this structure in order to build, line-by-line,
the equivalent FairSquare program. This is stored using a tree
structure containing compiled code snippets for each node.
Each node has two cases:
• Case 1: split node

At a split node, the classifier branches to a child node
depending on the value of a particular feature. We
compile this into a snippet of the form:

i f f e a t u r e > t h r e s h o l d :
. . .

e l s e :
. . .

We then recursively compile each of the children nodes
and insert these lines into the conditional bodies.

• Case 2: leaf node
At a leaf node, the classifier makes a decision about the
label of the data point. We represent this in the program
with the compiled line label = 0 or label = 1
based on the decision. No further recursion is performed
at this node.

To print out the final compiled program, we return to the
root node and recursively output it and its children.

2) SVMs: Support vector machines work by learning a
decision boundary between two classes. In our implementation,
we support only the LinearSVC class, which finds a hyperplane
boundary by learning linear weights for each feature. Instead
of using nested conditionals like the decision tree classifier,
this classifier relies on computing a weighted sum of the data.
This classifier type is very different from the decision tree and
is more useful for continuous valued features. It produces a
shorter compiled output, with a program size linear in the
number of features, since it does not use recursion. This
means that the analysis runtime of the final program is more
predictable and does not depend on the training parameters.

Converting a LinearSVC classifier to a FairSquare program
consists of unpacking the internal weight matrix into individual
expressions for each feature. A weighted sum expression is
constructed and appended to the output. The intercept param-
eter is then added to the target variable.

3) Neural Networks: Neural networks have the ability to
model arbitrarily complex decision functions, making them
powerful classifiers. They are a popular choice for modeling
complex systems, but the size and complexity of these net-
works makes them difficult to analyze and understand by hand.
This presents a unique opportunity for FairSquare to make it
possible to analytically determine the fairness of a complex
neural network.

In our implementation, we support only a restricted class
of neural networks that work well with FairSquares program
structure. Specifically, our implementation can compile MLP-
Classifier instances that use the rectified linear unit activation
function at each layer. This class supports a perceptron archi-
tecture, which uses fully-connected hidden layers. The size of
the output program is linear in the number of neurons in the
network, including all input, hidden, and output neurons.

We compile the neural network into a FairSquare program
by processing each layer at a time, while constructing new
variables to represent hidden neurons. Each neuron is compiled
in a similar manner to an SVM by unpacking the weight
matrix into a linear expression. The relu activation function
is then applied to the neuron output by adding the following
conditional statements:

i f v a l u e < 0 :
v a l u e = 0

The final layer of the MLPClassifier uses a logistic activation
function to produce the output classification. For training
purposes, this is necessary since the logistic function converts
the [−∞,+∞] range of the pre-activation output to the range
[0, 1]. However, for our classification purposes, including the
logistic output is unnecessary. Since we are only classifying
between two classes, our decision boundary is 0.5, meaning
that a post-activation value above 0.5 will be classified as
label 1 while all other values will be classified as 0. This
is equivalent to comparing the pre-activation value with a
boundary of 0, since the logistic function is monotically
increasing and σ(0) = 0.5. Thus, we do not compile the
logistic function into the program output.

C. Classifier Pipeline
While the decision classifiers we discussed above cover

a great deal of simple use cases, there are many additional
features that are employed by sklearn users which were
deemed crucial to integrate. In particular, a normalization step
is typically used before using models such as SVMs or neural
networks. This is needed in order to rescale and shift the input
data. Our implementation thus supports the StandardScaler
preprocessing class, which subtracts the means of features
and scales them to unit variance. This is compiled into a
program by creating one line for each variable that performs
its associated scaling and then saves the result.

In order to include this step as part of a single classifier,
we also support the Pipeline class, which provides a way
to connect multiple classification steps into a single model.
The Pipeline itself is simply an iterable at its core, and we
implement it by iterating over its steps in turn, creating new
variables to store intermediate steps.



FAIRTEAR: AUTOMATED PROBABILISTIC ANALYSIS ON DATASET MODELS 7

D. User Interface

We created a web-based user interface for FairTear which
provides a way for end users to interact with the system and
perform fairness analysis. The user can upload their data and
classifier files directly through the webapp and specify fairness
parameters. They can then run the analysis and view results in
their browser.

Our webapp uses a server-client architecture which allows
the FairTear service, allowing it to be used via any browser
without setup or installation. Most of the heavyweight data
processing is performed on the server, while the client per-
forms a small amount of additional processing for the purpose
of assisting user input. The app can be easily deployed for use
with a one-click deploy button.

Additional documentation regarding the implementation
of our user interface, as well as deployment instructions,
is available on our GitHub repository (https://github.com/
yashpatel5400/fairtear).

E. Server

The FairTear server is implemented in Flask, a Python web
server microframework. This framework allowed us to easily
integrate our FairTear processing code into the web server. The
server exposes a single endpoint, _analyze_data, which
accepts the following pieces of information from the user:
• data CSV file
• sensitive attribute, conditional, and threshold
• (optional) qualified attribute, conditional, and threshold
• classifier pickle file
• fairness target attribute, conditional, and threshold
Given this information, the server then compiles both a

population model and a classifier in the FairSquare language by
calling the compilation code described in prior sections. These
compiled functions are assembled together into a complete
FairSquare program file. Finally, this program file is then
handed off to the FairSquare library, which performs the
fairness analysis and prints out the fairness result.

All of the output during this process, including compilation
statuses and fairness analysis data, is streamed to the users
browser as it is ready.

F. Client

The client interface is implemented using standard web tech-
nologies (HTML, JS, CSS) along with the Bootstrap, jQuery,
and Redux libraries. It provides an easy-to-use interface for end
users to interact with the FairTear system and perform analyses
without requiring knowledge of the FairSquare language.

When a user opens the webapp, they are presented with a
set of input fields. The first section of the page is used to
configure the population modeling stage. The user first selects
their population dataset by uploading a .csv file. After a file is
chosen, the client uses the PapaParse library to load the .csv
file in order to read the attributes in the dataset. It then prompts
the user to select one of these as the sensitive attribute. The
user can then configure the threshold and comparison operator.

Optionally, the user can also specify a qualified attribute, or
they can choose to omit this parameter.

The second section of the page prompts the user for their
classifier model. The user can upload their saved pickle file
containing the pretrained model under analysis. They can then
specify a desired target attribute name and fairness threshold.

Once the user has entered this information, they can then
press the Run Analysis button at the bottom of the page to
perform the fairness analysis. This uploads their data to the
server, which then proceeds to compile the program and run
it through FairSquare on the backend. Analysis progress is
streamed to the browser and is displayed in a box on the screen.
Once analysis is complete, the final fairness result is shown.

III. RESULTS

As in the FairSquare paper, we consider the performance
on the Adult Census Dataset (available at: http://archive.ics.
uci.edu/ml/datasets/Adult). The main distinction between the
tests/results we wished to obtain through our tests and those
conducted in the FairSquare paper is that we treat age as the
sensitive attribute rather than sex. To this end, we present the
results below and discuss their qualitative interpretations and
explanations in the discussions below.

We generated three principal categories of experiments, each
of which were performed in multiple stages. These tests are
performed on a SVM, NN, and Decision Tree classifier, either
on on subsets of the dataet or on the entire dataset. We present
the results below, consisting of both the outputs of our program
and the final fairness outcome, and discuss their significance
in the section to follow. Note that there were some trials that
did not terminate in the FairSquare pipeline, which we indicate
appropriately in the table.

Each of the decision classifiers were tested across some
subset of the input features. That is to say, we consider the
first n of the input features (columns of the data) and train on
those to predict the income status. In this case, the income is
binary, with 0, 1 respectively indicating whether the income
does or does not exceed $50,000. Therefore, in any reference to
which “subset” the classifier was trained/predicted on in the
results or discussion below, assume that this unambiguously
refers to a subset of the features.

For sake of completeness, we also include figures that show
the entire generated models for the population and each of
the three models, although none of these terminated in a
reasonable time frame.

Finally, we deployed the FairTear user interface to a
publicly-accessible server for testing and demonstration.
The webapp is accessible at the following URL: https://
fairtear-demo.herokuapp.com/.

We tested the webapp on one of the datasets and SVM
classifiers used in our experiments. A screenshot of the re-
sulting output is shown in figure 4. This screenshot shows the
three sections of the interface: population modeling, classifier
specification, and analysis output. The output section shows
the final results of an analysis performed on this dataset and
classifier.
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TABLE I. RUN RESULTS: CHECKMARK INDICATES COMPLETED RUN, CROSS INDICATES NON-TERMINATION

Features Included SVM NN Decision Tree
3 XFAIR (5 sec) XFAIR (32 sec) XUNFAIR (2 sec)
4 XFAIR (16 sec) XFAIR (15 min) XUNFAIR (4 sec)
5 XUNFAIR (∼25 min) 7 XUNFAIR (53 sec)

Fig. 4. Screenshot of FairTear webapp after running an analysis.

Fig. 5. After running any one of the trials, this is the typical output that
is produced on the FairSquare back-end. We expect no end user to have
to interface with such values (i.e. the ratio bound calculations), given that
the primary reason FairTear was developed was to provide an abstraction
layer from this complexity. However, debugging fairness in its current state
would follow along the lines of attempting to make sense of these bounds and
understanding their convergence.

IV. DISCUSSION

We break down the discussion of the previously presented
results into four sections, one for the population model and
one for each of the classifier types.

A. Population Model
There were two main novel features introduced in this

paper with regards to the population model that we wished to
study in these results. These were the automated detection of
partitioning variables with optimal partition values, as well as
the identification of the optimal distribution function for fitting
to the underlying features data. We subsequently discuss the
progression of the population model as more features were
added for fitting classifiers.

Turning our attention first to the input feature partitioning,
we observed that the chosen relations align with expectations.
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Fig. 6. The overall output of the model when allowed to work over the
entire dataset, i.e. all 14 of the input features. Much of the behavior we see in
this population model, such as the step-wise workclass fit and the partitioning
of marital status on age, seems in accord with what would be conventionally
deemed as intuitive connections.

Fig. 7. From top to bottom, the population models for the subset of three,
four, and five features. These population models are precisely those that were
used in each of the classifier tests, i.e. there is no direct relation between
changing the classifier and the associated population model if the dataset is
identical.

Specifically, given that education number is closely related to
the level of education a person has attained, the conditioning
on these two was likely completely evident. For less direct
relations, however, such as age and marital status, we also
see that the partitioning was well formed, i.e. those of young
age had a greater range in their marital status, whereas almost
everyone was married into the middle years of their lives.

Switching to the latter point of novelty, the intuitive un-
derstanding behind step distributions is that they should cor-
respond to variables whose underlying distribution is either
segmented completely (i.e. a binary variable) or uniformly
distributed. In line with that, occupations and workclasses,
which occur in finite steps, had their distributions generated as

Fig. 8. The decision tree trained on five of the features (top) and the entire
feature space (bottom). Note that the bottom could not be fully included, since
its far longer than the space allotted here. In addition, including further parts of
the tree would not provide any greater information than that which is captured
in this subset.

Fig. 9. The SVM trained on five of the features (top) and the entire feature
space (bottom). Unlike the decision tree or neural network, both outputs are
shown in their entirety here.
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Fig. 10. The neural network (MLP) trained on four of the features (top) and
the entire feature space (bottom). The reason we choose to depict the four
rather than five case is because five did not terminate, slightly complicated
further discussion on the matter. Once again, the bottom result is curtailed for
lack of space.

such. Likewise, the alternate case was similarly well-behaved,
where any variable we would expect to be continuously dis-
tributed was given a Gaussian distribution, including education,
capital (gain and loss), and hours per week. Despite this overall
reasonable performance, there are some quirks with regards to
the classification of certain features.

For example, marital status, education, native country, and
one branch of occupation were classified as Gaussian, despite
the underlying variable being categorical. Upon further in-
vestigation, it became clear that this was largely due to the
significant number of possible values in each of those features,
making the continuous fit just as appropriate or better than the
discrete counterparts.

For example, the “native country” feature had the fol-
lowing set of possible values (each mapped to a nu-
merical label): United-States, Cambodia, England, Puerto-
Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India,
Japan, Greece, South, China, Cuba, Iran, Honduras, Philip-
pines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal,
Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan,
Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland,
Thailand, Yugoslavia, El-Salvador, Trinadad & Tobago, Peru,
Hong, Holand-Netherlands.

This shows that the presence of discrete variables leads to
ambiguity in determining what type of underlying distribution

is appropriate. An additional option may be implemented going
forward to indicate whether a particular feature is discrete or
continuous.

Switching over to discussing the progressive compiled popu-
lation models (i.e. stepping from three features to five features
in Figure 7), we notice two main facets with regards to
the ideas previously discussed. The first is that independent
variables do not change in their distribution, meaning those
that were not further conditioned had the identical distributions
between the population model of three and four features, as
expected. More interestingly, however, the variables were all
independent (from a partitioning point of view) until the fifth
feature was added in. This seems quite natural in the first
case, given that fnlwgt (a feature which represents a weighted
sum of demographic features), workclass, and age, are not di-
rectly related to one another. While the independence between
education and workclass may seem somewhat unintuitive in
the second case, this follows because the workclass is quite
varied across the same degree and vice versa. That is to say, a
given industry will have people from a variety of educational
backgrounds, largely owing to the fact that there are people
in many positions that must be accounted for. In addition, the
occupations in the dataset themselves are industries that would
likely be of varied backgrounds, consisting of values such as
Tech-support, Craft-repair, Other-service, and Sales.

At last, with the fifth feature, we see a level of partition-
ing, arising from the natural relation between education and
education number (the aggregate numerical score to indicate
education level). Thus, with further and further extension of the
feature space, such partitions become clearly more elaborate.

B. Decision Trees
Seeing that a decision trees are often regarded as one of the

most interpretable models in the modern era of discriminatory
modelling, it followed quite directly that these could be directly
converted into the desired .fr format. As previously described,
the classifier output must be of the form of repeated (and often
nested) conditionals. Given that decision trees are built with
this very structure at their heart, the decomposition was quite
natural. We see that the decision tree output consists primarily
of nesting conditionals on independent variables. Thus, the
main point of distinction is that there are no composite
variables, as is the case in nearly all the other classifiers.
This is to say, given input features A,B, the decision tree
creates adjusted versions of those variables Â, B̂ but does
not add an additional variable of the form C = A + B.
This makes interpretation and qualitative understanding of the
fairness decision usually more straightforward than is the case
in other classifiers.

We now turn our attention to what we can glean from the
results of the runs and compiled code. The former makes clear
that the decision tree was significantly faster than the other
classifiers, likely due to the clear decision boundaries that
were formed internally by the FairSquare estimator. That is to
say, since FairSquare is heavily centered around approximated
volumes under regions defined by decision boundaries, the
alignment of such boundaries with the input features (owing to
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the previously observed fact that no composite features were
defined by the decision tree in these instances) likely allowed
the computation to follow significantly more smoothly than
in the other instances. To this end, it may be worthwhile
investigating a manner of adjusting the internal estimation
means of FairSquare to take advantage of this alignment and
adjust it to the cases of SVMs or NNs.

To ensure the pipeline had appropriate behavior, we at-
tempted to reason through the fairness classification. The
unfairness of this decision tree is likely the result of the crucial
partitioning of the space by the scaled age in the second level,
in turn causing the result to largely depend on this value.
Seeking to have the education level be sensitive would likely
result in a result of UNFAIR for this same reason.

There are some minor points to note in practical use cases
of FairTear with decision trees. The first is that, for many of
the decision tree classifiers initially tested, the results were
inconclusive and in fact terminated in an unsatisfiability error
from FairSquare. After further investigation, it was found
that the source of this error was the lack of the different
outcomes on different branches, i.e. there were cases in which
some branches would both end in income = 0. This was
fixed with additional parameter tweaking, including specifying
a min samples split threshold in the DecisionTreeClassifier.
Further, the decision trees had significantly more complexity
than the other classifiers, producing compiled output that were
roughly 25,000 lines of .fr code. Seeing that even 100 lines
pushes the boundaries of time feasibility, this seems rather
unattainable in FairSquare’s current state. Given that fact, we
simply circumvented the issue by restricting the maximum
depth of the decision tree to 3.

C. SVM
Unlike the decision tree, the SVM is not often touted as uni-

versally understandable. While the structure of the overall pro-
gram itself is relatively reasonable, the final line in which the
scaled variables are all used to define a single income variable
is quite unreasonable to intuitively understand. However, the
compiled code does follow the structure we would generally
expect an SVM to have, in which the features are combined
into a single, high-dimensional classifier variable, from which
the decision boundary is then drawn. The compiled classifier
also highlights how the different variables were all measured
in significantly different ranges, i.e. each scaled parameter had
vastly different values. Thus, an overall takeaway from this
particular case is that, while the .fr file itself is typically quite
cryptic, there are cases where some semblance of usefulness
can be gleaned.

Turning our attention to the compiled results table, we see
that the SVM typically had a reasonable time to completion.
The cases of two and three input features finished in times not
much slower than the decision tree. As soon as five features
were introduced, the runtime increased dramatically. This is
almost certainly the result of the additionally complexity
(noted in the population model discussion) from the fifth
feature, namely when partitioning was first introduced. While
the decision tree did not have any significant jump, the SVM

did, since the high-dimensional final income variable defined
lies on an odd intersection of the different feature spaces. Thus,
conditional jumps on each of the variables is quite difficult to
extrapolate to this final variable, making any complex SVM
(i.e. for partitioned spaces) a time drain.

D. Neural Network
We now turn our attention to the neural networks (multi-

layer perceptrons). In line with the SVM properties discussed
above, NN are notorious for being difficult to understand.
As expected, the compiled code in Figure 10 is largely
cryptic. It is difficult to manually evaluate fairness given these
pieces of code, as they combine both composite variables and
conditionals. The former (introduction of composite variables)
parallels the same issue from SVMs, except the final high-
dimensional composite variable is replaced by a number of
lower-dimensional hidden layer composites. Further, the pres-
ence of conditionals for the hidden layers’ thresholding makes
decision boundaries irregular, further complicating the work of
FairSquare.

As a result of this significant added complexity, we note
two main takeaways. First, we notice that the runtime is
significantly greater than either the decision tree or SVM
classifiers, once again arising from the significantly increased
complexity of the decision boundaries. In fact, the lack of con-
vergence of one of the trials seems to suggest that future work
should emphasize speeding up this pipeline going forward.
Further, in the case of neural networks or similarly complicated
architectures, it is difficult to manually corroborate or explain
the results, as it is quite difficult to heuristically justify why
a certain classifier was deemed fair and another unfair. To
that end, we must perform such classifications on simpler,
more understandable classifiers, build confidence in the overall
system, and extend this trust to the use cases that cannot be
fully understood.

V. FUTURE WORK

Given that the eventual goal is to automate the implemen-
tation of a fairness checker into standard ML development
pipelines, we see some extensions to both FairSquare and
FairTear that will help move towards that end.

A. FairSquare Extensions
While FairSquare is quite elaborate a tool, there are some

additional features that can be layered on without critically
altering the back-end, largely with application-level extensions.
The first is of supporting more probability distributions. While
many distributions can be modelled using Gaussian or Step-
wise Uniform (i.e. Step([...])), including normal, uniform, and
binomial, there are many other continuous distributions at hand
that cannot, such as exponential and Poisson. Of course, these
are largely niche, but should a full automation be desired,
all distributions must be covered if we wish to avoid having
FairTear be a leaky abstraction. This, additionally, would have
to be supported by the support from the FairTear front-end,
where we would simply extend the ideas discussed in II-A1,
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in which we additionally compute KS distances associated with
these additionally supported distributions.

In line with that, additional debugging functionality may
be quite critical going forward. As with the advent of new
programming languages and frameworks, such as Rust over
C/C++, the computer science community as a whole has taken
a step towards functional programming. Such frameworks have
the key advantage that, once a program has been successfully
compiled, it often satisfies many desirable properties, such as
thread-safety or concurrency guarantees. An additional facet
that makes such languages ideal for development is specificity
of debugging, where compile errors can often be significantly
more telling than cryptic runtime errors, such as “Segmentation
Fault.” Thus, in a similar vein, FairSquare could additionally
expose results from its operation, whereby the exact source
of unfairness arises, whether that be from the classifier or
population model itself. The end result, therefore, would point
developers in the correct direction for debugging any fairness
errors, rather than the current state, where they simply see fair
or unfair.

An additional, and perhaps most important, upgrade that
can be made is of speed. Specifically, even with the relatively
simple cases considered in the results sections above, the
results took significant lengths of time to complete, run-
ning in excess of half an hour in some cases. Seeing that
the cases generated by FairTear were often quite reasonable
to see in practical applications, this significant time barrier
would impede adoption into large-scale systems. Most of the
computation time was spent in a phase where FairSquare is
“running quantifier elimination” (read on stdout). This largely
corresponds to the estimation process by which the fairness
is eventually determined. If either an alternative manner of
reaching an estimate were found or an effective manner of
distributing this computation, seeing that the ideal setup of
this tool would be on some server which the end-user does
not have to internally deal with themselves, the experience of
using FairTear would be greatly improved.

While there are many natively unsupported mathematical
operations in FairSquare, many are typically irrelevant in all
but niche machine learning applications, i.e. most trigono-
metric functions. However, the logistic function is quite cru-
cial in the ending layers of most simple MLP (multi-layer
perceptrons), making them quite a useful feature to support.
In particular, the key missing component is the support of
exponential evalution, i.e. floating point numbers of the form
a ∗ ∗b. With this simple extension, a greater range of neural
networks could be supported by the overall pipeline.

B. FairTear Extensions
As hinted at above, many of the extensions of FairTear

relate to those implemented by FairSquare. That is to say,
with additional features integrated in the FairSquare pipeline,
FairTear too must be extended to account for those changed.
In addition, however, there are some pieces of functionality
already supported by FairSquare not yet integrated, due to the
diminished quality in results. Specifically, the use of variable
conditionals was not yet integrated in FairTear. This refers to

when variables are conditioned on one another, i.e. something
of the form:

A = g a u s s i a n ( x0 , y0 )
B = g a u s s i a n ( x1 , y1 )
i f A < B :

. . .
e l s e :

. . .

Namely, where the threshold itself was a variable. While
this additional functionality was not much more difficult to
implement than the others done herein, its introduction into the
pipeline resulted in some suboptimal choices of thresholds and
overall program structure (i.e. too many levels of conditionals).
We, therefore, chose to air on the side of simplicity, since it
both makes the underlying .fr code more understandable and
decreases the runtime of FairSquare.

In line with decreasing runtime, the overall FairTear pipeline
is quite long, especially for running complex classifiers of
modern-day scale. To this end, should we ever desire main-
stream adoption, the time barrier must be significantly reduced
from its current state, much in the way that compilers, while
somewhat significant in large projects, take relatively minimal
time to complete their tasks. While there is no clear way to
segment fairness calculations from the outset, there may be
an underlying way in which the task of calculating fairness
could be segmented. In doing so, we could effectively create
the equivalent of a “Makefile” for fairness, in which only the
parts of the population model or classifier that were changed
would require a repeated calculation of fairness.

To follow the same principles of extension discussed in
the previous section with FairSquare, there are many ways
in which FairTear can be extended. The most direct way
is supporting a greater extent of the sklearn package. One
specific point of extension is the preprocessors library, namely
where additional features other than the StandardScaler can be
integrated into the data pipeline that would be standard for end
users to have implemented.

In addition, while a great deal of students and elementary
studies can be conducted with use of sklearn, many modern
applications extend into using packages such as Tensorflow or
Torch. In line with the growing popularity of deep learning
and its associated frameworks, all tools developed for testing
fairness or the like must be compatible with these. Although
parsing will be more complicated than the MLP parsing that
was performed for supporting neural networks herein, and
may involve delving into the TensorFlow source code, we
believe this to be a crucial next step in the evolution of the
FairSquare/FairTear toolkit.

We hope that the open sourcing of our code will make such
extensions accessible for developers and researchers who wish
to build upon FairTear.
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