
ORF 418: Optimal Learning Final Project

Optimal Charging Station Locations

Kevin Sun

Princeton University

E-mail: kjsun@princeton.edu

Yash Patel

Princeton University

E-mail: ypatel@princeton.edu

Abstract. Tesla and electrical vehicles (EVs) have become more prevalent in the last

decade. With the great rise in projected growth in EVs, the issue of placing electrical

charging stations has grown to the forefronts of customers’ and business owners’ minds

alike. We seek to address this problem, namely by investigating policies to determine

the optimal locations to place electrical charging stations in a city setting. For this

task, we developed a lookup-table model, with altered updating equations, and tested a

few learning policies, in the forms of online and offline Knowledge Gradient Exploration

(KG), Interval Estimation (IE), Boltzmann Exploration, and Pure Exploitation. Upon

doing so, we found that the Knowledge Gradient Policy was the most effective in

maximizing our total usage over all stations within our time horizon. We therefore,

recommend it as a baseline for building future policies in this context of maximizing

station utilization. Future studies may wish to expand upon the bottleneck employed

in the model for charging stations and also time inhomogeneity.
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1. Introduction

1.1. Motivation

In the past decade, the electric vehicle industry has been expanding. This expansion

has particularly exploded in the last few years, with the introduction of Tesla and its

vehicles into the market. Tesla has not only compelled people previously using electric

cars to stick with their decision but has also made the usage of such cars for mainstream

audiences more appealing. In particular, this year saw the release of the Tesla Model III,

furthering the expansion of electric vehicles by pushing its cost into a very reasonable

range, affordable by most middle class families.

Already, Tesla is projecting that they will sell “80,000 to 90,000” vehicles by this

year’s end – a huge increase from that seen in years past [1]. But, even more staggering

is the extent to which electric vehicle usage is projected to rise. As seen in the graph

below, the current rise in electric vehicle usage is expected to be completely dwarfed by

its projected increase over the next five years.

Figure 1: (Left) Depiction of electrical battery power consumed for the purposes of EV

(electric vehicles) in years past with projections up until 2030. Clearly, there has been a

rise since 2010, but it is extremely small compared to the projected increase in years to

come. (Right) Similarly, we see the direct data dealing with EV sales, rather than the

power consumed by them, reflecting a similar fate. [2]

This rise in popularity has sparked great interest in the related fields of optimization,

which we wish to delve into herein.

1.2. Problem Description

Just as the rise of cars saw the birth of gas stations, the growth of EVs is rapidly seeing

the establishment of electric car charging stations. However, because the EV industry is

rather young, there is a deficiency in EV charging stations–the small number of stations

that are currently in service are located only in the most populous regions of the US.

With sales of Tesla and other companies’ EVs growing nationwide, this must change in

order for charging stations to properly accomodate their rising demand. In particular,

highly populated areas such as cities will see multiple stations appear very close to each

other and more sparsely populated areas will see the introduction of charging stations

where they were completely absent before.
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Figure 2: While Tesla has done a rather decent job so far in placing charging stations

across the US, it has yet to completely cover much of it. This is due in part to it being

a relatively new company whose product demand is relatively comparatively small with

respect to other vehicle manufacturers, resulting in a more constrained budget. [3]

It is very likely that people will see gas stations as often as between every other

street, in a populous area. This, however, is nowhere near the case with Tesla’s charging

stations, where those wishing to use them must drive out of their way to use a station

or buy a personal charging dock. As Tesla has made it clear they wish to support free

charging for their stations, neither of these alternatives seem appealing. Thus, not only

is it the case that these charging stations will become more ubiquitous in the future, but

too that this fate is not too far away.

We wish to determine the optimal locations for placing these stations. Tesla has

a fairly limited budget as of now, as they continue to use much of their capital in

manufacturing cars and developing new vehicles, but they will wish to place stations

to retain customers. Thus, our context involves the placement of permanent charging

stations.

As the context of the United States is too large for the scope of this project, we

look on a more local level. In particular, while Chicago has been partially covered with

stations, its coverage is clearly not sufficient for a few years from present day. We,

therefore, consider Chicago and determine the optimal placement of charging stations in

a subsection of the city, specifically between 31st and 67th Streets.
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2. Model Description

This problem can be formulated as an optimal learning problem, as we wish to determine

the best placement of a charging station, with as few attempts as possible and unknown

demands at each potential location. With Tesla’s attempt to run charging stations free,

it runs a huge risk of running a loss in money if stations that are built are unused, both

due to construction and weekly costs. Thus, it is critical that each station be placed with

the intention of tending to some stream of customers, making this is an online learning

problem. We will also take our budget to be 15 charging stations. That is, we expect 15

charging stations to be constructed in this subsection of the city being considered, with

an observation taken every two weeks.

2.1. Assumptions

Prior to developing the model, we make the following assumptions to ensure that the

context is restricted enough to capture reality while being feasible:

• The city of Chicago can be modelled strictly as a graph of straight lines and edges,

as described in the subsequent section. This closely represents how Chicago is truly

structured, meaning little information is lost in making this assumption.

• Charging stations are only located at nodes of the graph (i.e. at intersections). That

is, they cannot be located “midway” through a street. While this is not perfectly

realistic, the simplification does not cause a loss of relevant information.

• No charging station is “disassembled” once it has been placed. Once again, with the

entire simulation lasting 30 weeks, this is not unreasonable, as a station would likely

only be destroyed after consistent lack of traffic for at least six months.

• The number of people who use a station is directly proportional to the traffic flow

through the area. This assumption can be reframed as saying that the concentration

of EVs (out of the total “car population”) is constant across Chicago.

• Each station has a max capacity, which we denote as Mx when considering a station

x. Once again, this is realistic from the nature of how charging stations are built

(i.e. finite capacity). The maximum capacity for each station is the same.

• Charging stations cause a split in demand based on separation distance. In other

words, if two charging stations are close together, the demand will be much more

directly split than two largely-separated stations.

• A car using a charging station in one location will charge on average the same amount

of energy as a car using a station located elsewhere. This implies that the energy

usage of a charging station is directly proportional to the number of cars that use

the station.

2.2. Model Setting

As has been established so far, we consider the context of Chicago for our analysis,

with the simplification that the city is an undirected graph. As is standard, this graph
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G is composed of (V,E), namely with V vertices, representing intersections, of the E

edges, representing streets. As seen in the figures below, this approximation quite closely

parallels reality.

Figure 3: Above is the layout of Chicago, from which the very rectangular structure (as

with most large cities) becomes quite apparent [4].

Figure 4: This simple graph structure clearly replicates the above structure we see of the

city of Chicago, making it a valid approximation in our context [5].

As per the layout of Chicago, the main streets are those that occur in a ≡ 3 mod 4,

i.e. 31st and 35th Streets, which are what we will be examining. Further, while Chicago

does not have the “avenue” parallel from New York City, the numbering of buildings

roughly replicates this structure. In other words, all buildings numbered in the 4700s will

be roughly along the same vertical line, meaning we simply imposed an avenue system

on Chicago as avenue = bNbuilding/100c, Nbuilding being the building number.
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3. Model Description

From the assumptions and model setting, the description rises rather naturally.

Throughout the section below, let us use x to represent a particular station in the context

of the graph.

We first deal with the “splitting” of demand for sufficiently close stations. If two

stations are too close to one another, the demand will be split between the two. In

addition, the decrease in demand for one station due to another decays with increasing

distance between the two stations.

Formally, our model will take this to mean demand to be proportional to a ϕt(x) for

a particular time t, defined as follows:

ϕt(s) =
1∑

s′∈St
e−α·d(s,s′)

Where St represents the set of stations currently in the simulation at time t, d(s,s′)

represents the distance between stations s and s′ (in km), and α is a fixed constant. Note

that s itself is included in S. This allows to more generally capture situations where s

is the only station in the simulation, as then ϕ(s) = 1, or situations where stations may

already be established at location s.

While this may seem to be a crude method to deal with the splitting of demand, it

makes intuitive sense at least in the corner cases. For example, consider a graph where

there are n stations on a single node. Then ϕ(s) = 1
n

for all s, which is reasonable, since

one will expect the demands to be split evenly among all nodes. Furthermore, as distance

increases to infinity, the contribution to the weight in the denominators goes to 0, which

implies that a station s′ at infinite distance from station s has no effect on the demand

at station s.

We assume the “half-life” of a pair of stations (s, s′), which in this context refers to

the separation necessary to reduce the influence between two stations by half, is 1 km.

From this, we can simply calculate α to obtain that it equals ln(2) or ≈ 0.693.

Given ϕ(x), we will define the demand at a station as

D(x) = ϕ(x) · λx

Where λx is the unsplit demand on a station (i.e. the number of people who would

have wanted to use the station if it were the only station on the graph). Note that λx is

an unknown variable that we have a belief on. Let us denote the vector λ as the vectors

whose components are λ1, λ2...λV .

From this demand, however, we wish to consider the total usage of a station, as this

is the measurable quantity (denoted as U(x)). As we further assumed each station has a

maximum capacity, the usage can be modelled as:

U(x) = min{Mx, λx · ϕ(x)}

We will simulate this with correlated Normal-Normal belief models for each λx.
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3.1. Prior Means and Variance Generation

Per our assumption, it follows quite naturally that our initial belief of the λx be directly

proportional to the traffic data of the area. In turn, we considered two priors and ran

identical experiments on each. The former was a simple uniformly distributed prior, with

mean 100 and variance 362. These specific numerical values were obtained through the

Chicago data [7] (also used below), namely as these were the average mean and variance

of all the vertices in question, scaled appropriately using the factor c that we used for the

second prior (below).

The latter prior used was more complicated, chosen to reflect the information

available through the public data source. By direct proportionality to the traffic, we

mathematically ascribed the flow to:

λ0
x = c · T (x)

Where c is the constant of proportionality, which is quite related to the proportion

of people in Chicago who own an electric car. Since this data is not publicly available, we

made the further assumption that Chicago roughly represents a standard/average region

of the United States and, in turn, has the national percent of electric cars being run

(i.e. 0.66%) [6]. Of this proportion of cars passing through a particular intersection, we

estimate that ≈ 10% would use the station at a given time. This may appear high, but it

considers the fact that many times, people will only enter the area containing a charging

station because they need to charge their cars. In turn, the estimated prior was simply:

λ0
x = 14 · 10% · .66% · T (x)

With this and the T (x) numerically available [7], the following prior was constructed for

the means:

Street/Ave 5 6 7 8 9 10 11 12 13 14

31 153 87 99 87 90 92 112 76 79 103

35 89 147 91 78 81 105 103 86 87 157

39 89 67 80 67 70 94 92 75 76 83

43 82 63 69 70 60 84 82 65 66 73

47 136 183 131 104 107 131 159 112 113 121

51 93 72 85 79 84 82 97 80 81 88

55 211 136 148 136 139 312 161 144 145 145

59 105 84 136 84 87 111 109 151 93 100

63 114 74 105 92 96 119 118 100 101 104

67 93 72 116 72 75 98 97 80 81 88

Table 1: Prior of the means of the stations, generated using a simple proportion of traffic

data for the city.

In addition, we needed to determine the initial belief of the variance for this usage

data. The complication with this matter, however, was that c was still taken with
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uncertainty. In other words, we could not treat c simply as a constant when determining

the variance of a location i. With that in mind, the following equation governing the initial

belief of the variance was determined (assuming a 50% uncertainty on c and independence

in c and T (x)):

σ2,0
x = V ar(c · T (x))

= E[c2 · T (x)2]− E[c · T (x)]2

= Cov(c2,T (x)2) + E[c2]E[T (x)2]− E[c · T (x)]2

= E[c2]E[T (x)2]− E[c · T (x)]2

= (V ar(c) + E[c]2)(V ar(T (x) + E[T (x)]2)− [Cov(T (x),c) + E[T (x)]E[c])]2

= V ar(c) · V ar(T (x)) + V ar(c) · E[T (x)]2 + E[c]2 · V ar(T (x))

=
5

4
c2s2 (T (x)) +

1

4
c2T (x)2

Where s2 (T (x)) represents the sample variance on T (s). As a result, we calculated the

variance prior similarly to obtain (following page):

Street/Ave 5 6 7 8 9 10 11 12 13 14

31 7367 3450 3303 2517 2702 5764 3974 2409 2295 3516

35 3640 7140 3080 2349 2521 6568 3698 3007 2794 7223

39 3166 2414 2146 1486 1640 5557 2697 2100 1881 2325

43 2879 2247 1742 1580 1286 5080 2229 1721 1497 1903

47 6182 10009 5220 3441 3654 8014 7253 4204 4005 4585

51 3354 2551 2313 1874 2145 5008 2893 2255 2039 2501

55 14393 7999 8156 7054 7317 29827 9128 7943 7760 7941

59 4255 3326 5444 2394 2575 6691 3815 6644 2865 3370

63 4510 2701 3379 2556 2750 6970 4086 3271 3066 3371

67 3447 2647 4016 1718 1879 5850 2985 2350 2134 2594

Table 2: Prior of the variances of the station usage, similarly estimated using the traffic

data in the intersection.

3.2. Prior Covariance Matrix

The covariance matrix Σ0 is constructed by first constructing a correlation matrix and

subsequently scaling it appropriately. Clearly, by the dependency of a station’s usage on

its location, and by the relation between the demand at a location and demands at nearby

locations, observing the use of a particular station will tell us more about demands at

nearby locations as well. With this, we simply take the correlation ρi,j between i,j to be

defined in the following natural manner:

ρi,j = e−κ||i−j||
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Where ||i− j|| is the Manhattan distance between stations i and j (i.e. the sum of the

vertical and horizontal distances between the two points). Note that the Manhattan

distance between two stations is the distance an EV user would have to travel to get from

one location to the other while staying on the grid. We choose κ such that the half-life

distance (distance required for correlation to decay by half) is 3km. Solving for κ, we

obtain κ = ln 2/3 ≈ 0.231.

Finally, to obtain the covariance, we simply apply the standard formula:

Cov(i,j) = ρi,jσiσj

Where σi, σj are the variances for the usage of station i and j respectively. Note that by

creating the covariance matrix in this manner, the matrix is always positive semidefinite,

no matter what the values for σ are.

3.3. Updating Equations

The updating equations in the context of our problem does not follow directly that of the

standard model. Namely, there are two scenarios we must account for:

• Case 1: Observe a value < Mx

• Case 2: Observe Mx

3.3.1. Standard Update In the former case, the observation is well-defined. Namely, we

know exactly the demand of the station during the observation time-frame. In turn, this

case follows the standard updating equations, where our observation W is:

Ws =
U(s)

ϕ(s)

As we have observed U(s) and can directly calculate ϕ(s). We can then apply the standard

updating equation for correlated Normal-Normal belief models:

λn+1 = λn +
Ws − λns

(βW )−1 + Σn
ss

Σnex

Σn+1 = Σn − Σnes(es)
TΣn

(βW )−1 + Σn
ss

.

Where es is the basis vector on s.

3.3.2. Vague Update In the latter case, however, we only know that the station reached

capacity. That is, there could have been exactly M customers who wished to use the

station or an arbitrarily larger number of customers than M . In other words, this

constitutes the case of having M +N customers wishing to use the station, where N ≥ 0.

Clearly, as this is not a specific data point, the information gained is less than that from

the former case. Specifically, we now must update our equations such that the posterior

distribution satisfies:



3.3 Updating Equations Page 12 of 52

Pr
{
λn+1
x ∈ dx|W n+1

s ≥Ms, S
n
}
∀x

Graphically speaking, if we are given a normal distribution, this corresponds to the

case that ϕ(s) · λx is in the shaded region (lower bounded by M).

Figure 5: Region in which the real value is known to reside. We must update our posterior

with the information that the real value may arise at any location in this region.

Since the exact solution for the posterior becomes non-Gaussian, we choose to closely

approximate this as a single observation point Ws with the following properties:

Ws = E

[
Y | Y
ϕ(s)

≥M(s)

]
, Y ∼ N(λs,Σss)

βWs = ((βW )−1 + Σss)
−1

In other words, we will approximate this“vague observation”as a single point located

at the mean of all values on the bell curve above the maximum capacity with a variance

equal to the sum of the measurement noise and the current uncertainty in λs to reflect

the fact that our data is not a specific point but rather some point within an entire range.

For our normal normal model, there is a closed form for our value we should pick for

Ws. We have for standard normal Z:

E[Y |Y ≥M(s) · ϕ(s)]

= λs +
√

ΣssE

[
Z|Z ≥ M(s) · ϕ(s)− λs√

Σss

]
Now let k = M(s)·ϕ(s)−λs√

Σss
and we have that the above quantity equals

λs +
√

Σss

∫∞
k
ye−y

2/2dy

1− Φ(k)
= λs +

√
Σss

φ(k)

1− Φ(k)

Note that φ denotes the normal p.d.f, and Φ denotes the normal c.d.f. These can

easily be computed with Matlab and many other softwares, so for our purposes, this

equation is in closed form.
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4. Policy Implementations

4.1. Outline

We investigated the following policies:

• Pure Exploitation

• Boltzmann Exploration

• Interval Estimation

• Offline Knowledge Gradient

• Online Knowledge Gradient

We compared each of the policies not only to one another, but also to pure

exploitation, which served as our baseline. These were all completed through independent

code, but borrowed heavily from the code provided in class. However, as was described in

the preceding section, the updating equations had to be modified in the code to achieve

the desired alteration that was of interest in this study. Described below is a description

of how exactly we chose to use our policies in determining the locations to place stations.

4.2. Pure Exploitation

For our pure exploitation policy, the algorithm chooses alternative x at time step n + 1

in the following manner:

ϕ′(x) =
1

1 +
∑

s′∈Sn
e−α·d(x,s′)

xn+1 = argmax
x∈V

(ϕ′(x)λnx)

.

Where Sn is the set of all stations placed at time n. In other words, our pure

exploitation picks the station which yields the highest expected demand if we put a station

in that spot. The weights need to be updated before doing this calculation because we

want to pick the station which yields the highest demand after placement, and weights

are adjusted as soon as we place such a station. Note that this policy only considers

stations one at a time, with no regard for how our placed station will split the demand at

existing stations. Furthermore, it disregards max capacity, as the value x that maximizes

ϕ′(x)λnx also maximizes min(ϕ′(x)λnx,Mx).

4.3. Boltzmann Exploration

As per the pure exploitation policy, it makes most sense to weigh on expected demand

on each station x if we place a station there, so for this policy we choose xn+1 = x with

probability

px =
eρϕ

′λx∑
x∈V e

ρϕ′λx
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Where ϕ′ is as defined above and ρ is a tunable parameter. Note that our probabilities

each get “weights”ϕ′λx just as how our pure exploitation policy chose to maximize along

this quantity. An alternative would be to choose xn+1 = x with probability

px =
eρ·min(ϕ′λx,Mx)∑
x∈V e

ρ·min(ϕ′λx,Mx)

The former is more inclined to choose alternatives with higher demand, no matter

how high they exceed the maximum capacity, while the latter is more inclined to explore

different alternatives if certain locations exceed the maximum capacity by too much. For

our policy, we chose the former to mirror our choice within the pure exploitation policy.

4.4. Modified Interval Estimation

For interval estimation, we seek to choose xn+1 such that the expected value within zα
standard deviations above its mean is maximized. Mathematically, we are choosing

xn+1 = argmax
x∈V

min(min(ϕ′(x)λnx,Mx) + zα · Σxxϕ
′(x),Mx)

Note that for this policy, unlike the previous two, we are restricting our our values

to all those below Mx to give it a different flavour from the previous two policies in that

it now doesn’t give unnecessary weight to alternatives which may exceed the maximum

capacity. The expected result of this modification is that this policy may trade off possible

rewards gained in our online setting while also learning more about different opportunities,

resulting in a lower opportunity cost.

4.5. Knowledge Gradient (Online and Offline)

For our offline knowledge gradient, consider the definition

νKGx = E[max
x′∈V

ϕ′(x′) · λn+1
x′ −max

x′∈V
ϕn(x′) · λnx|Kn,xn = x]

Where Kn is our current state of knowledge and xn is our choice of station at time

n. Note that computationally for a normal-normal model this is

E[max
x′∈V

− ax′ + bx′ ∗ Z]−max
x′∈V

a′x

ax′ = ϕ′(x′) · λx′

bx′ =
Σnex

ϕ′(x) · ϕ′(x′)
√

Σxx + (βW )−1
(ex′)

T

Now let our choice xn for time n equal

argmax
x∈V

νKGx

.

Let us examine what we exactly this policy is doing. First of all, notice that this

policy does not take in account the maximum capacity at all in its calculations, just like
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for our Pure Exploitation and Boltzmann Policies. This policy chooses the station such

that the expected value of the best station on the next step is maximized. However,

in the process, it considers the effects placing station x regarding demand split at all

other stations. So we expect our KG policy to do well relative to the other policies in

maximizing the usage over all stations over all times for this reason.

For our Online KG policy, we simply change our choice for xn to

xn = argmax
x∈V

ϕ′(x) · λnx + γ
1− γM−n

1− γ
νKGx

In standard fashion.

4.6. Policy Evaluation

To evaluate each of the policies, we used an objective reflecting how much the stations

were used. Specifically, we used two objective functions to evaluate performance, as

follows:

• Considers the total number of people using all station at time t (summed over all

the times in the simulation). This, therefore, appeals to considering a “cumulative”

objective function.

• Considers the number of people using the station most recently added at time t,

similarly totaled over all the t. This, instead, reflects more of an incremental/micro-

scale optimization.

Our first objective can be expressed as the following:

ζ =
15∑
t=1

∑
s∈St

γtU(s)

And our second can be expressed as the following:

ζ =
15∑
t=1

γtU(st)

Where St is the set of stations at time t and st is the station added at time t. Note that

we can also increase our horizon in the first objective to let t go towards infinity, even

with only 15 stations being placed.

The opportunity cost can also be used as a metric for evaluation but it is not as useful

for evaluating policies in terms of the average performance with regards to profitability.

Instead, it is more useful for evaluating policies in terms of how well they found the best

alternative. We will use the same definition for opportunity cost as the one used in class.
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5. Experiments and Results

Below are the results amassed from each of the trials, all through the developed

programs. These demonstrate the comparative effectiveness of policies and their

individual effectiveness.

For all of the experiments we used the following parameters:

• Number of truths generated: 100

• Total number of stations placed: 15

• Discount factor (γ): 0.98 (Approximated using 30 day automotive corporate bond

yields and scaling)

• Boltzmann ρ constant: 0.75 (manually tuned by trial and error)

• IE zα: 3.0 (manually tuned by trial and error)

The code used to run the experiments is provided. Here is a summary of all of the files

included:

• PureExploit.m–runs Pure Exploitation Policy described above

• Boltzmann.m–runs Boltzmann Exploration Policy described above

• IE.m–runs Interval Estimation Policy described above

• KGCorrBeliefs1.m–runs Offline KG Policy described above

• KGCorrBeliefs2.m–runs Online KG Policy described above

• LogEmaxAffine.m–helper function for KG policies

• computeObj.m–computes first objective described

• computeObj2.m–computes second objective described

• RunPolicies.m–runs all policies, compares objectives and OC, for prior generated

from real data

• RunPolicies2.m–runs all policies, compares objectives and OC, for flat prior

Below are the results amassed from each of the trials, all through the developed

programs. These demonstrate the comparative effectiveness of policies and their

individual effectiveness.

5.1. Flat Priors

We first tested our code on flat priors. All of the values for λ are relatively close to each

other, so we do not expect too much deviation in performance in policies.

5.1.1. Cumulative Objective First we compare our cumulative objectives using three

different max capacities–1000, 100, and 50. The first capacity is much larger than any

value we would expect for demand, so we will call this “no cap.” The second is around

our prior means, so we will call this a ”mid cap.” The final capacity is around half our

prior means, so we will call this a ”low cap.”
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Figure 6: No Cap Comparison of Policies with Flat Prior

Figure 7: Mid Cap Comparison of Policies with Flat Prior
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Figure 8: Low Cap Comparison of Policies with Flat Prior

5.1.2. Incremental Objective Next we examine the incremental objective, or how well
each policy does in picking the highest performing station on each time step. Again, we
do this comparison across the same three different capacities:

Figure 9: No Cap Comparison of Policies with Flat Prior
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Figure 10: Mid Cap Comparison of Policies with Flat Prior

Figure 11: Low Cap Comparison of Policies with Flat Prior
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5.1.3. Opportunity Cost Finally, we examine the opportunity cost to see how well each

objective does in finding the alternative with the highest λ.

Figure 12: No Cap Comparison of Policies with Flat Prior

Figure 13: Mid Cap Comparison of Policies with Flat Prior
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Figure 14: Low Cap Comparison of Policies with Flat Prior

5.2. Prior Generated from Real Data

In this section, we seek to test our policies on priors generated from real data, which has

many regions of exceptionally high and low traffic. We think this will be more interesting

to examine due the volatility of our data.

5.2.1. Cumulative Objective First we compare our cumulative objectives using three
different max capacities–1000, 200, and 100. Again, we will name them “no cap,”“mid
cap,” and “low cap,” respectively. Note that our mid and low caps changed to reflect the
fact that many of our prior’s data points are above 200.

Figure 15: No Cap Comparison of Policies with Real Data Prior
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Figure 16: Mid Cap Comparison of Policies with Real Data Prior

Figure 17: Low Cap Comparison of Policies with Real Data Prior

5.2.2. Incremental Objective Next we examine the incremental objective, or how well
each policy does in picking the highest performing station on each time step. Again, we
do this comparison across the same three different capacities:
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Figure 18: No Cap Comparison of Policies with Real Data Prior

Figure 19: Mid Cap Comparison of Policies with Real Data Prior
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Figure 20: Low Cap Comparison of Policies with Real Data Prior

5.2.3. Opportunity Cost Finally, we examine the opportunity cost to see how well each

objective does in finding the alternative with the highest λ.

Figure 21: No Cap Comparison of Policies with Real Data Prior
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Figure 22: Mid Cap Comparison of Policies with Real Data Prior

Figure 23: Low Cap Comparison of Policies with Real Data Prior
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6. Discussion

6.1. Flat Priors

From our results, we can ascertain a few interesting conclusions. First of all we will

discuss our results with the flat priors. From our figures, we note that for our “no cap”

experiment, KG, IE, and online KG performed noticeably better than than the other two

policies with regards to our cumulative objective, namely maximizing over all times the

total usage over all stations placed. This can most likely be attributed to our KG policy’s

ability to take into consideration the effects of placing a station on all other stations,

where other policies cannot do this. Note that as we decrease the maximum capacity,

IE’s performance deteriorates rapidly with regards to this cumulative objective, most

likely because it equally favors all stations who reach maximum capacity, which leads to

a greater degree of exploration and lesser degree of exploitation with regards to station

demands. In addition, KG and Online KG’s performances become reduced to around

the level of the other policies because of their inability to capture the maximum capacity

(in their current formulations). Conversely, IE also performs much noticeably better

than all other policies with regards to opportunity cost when the maximum capacity is

reduced due to its tendency to explore more than exploit with regards to demand in

stations (so it finds the best alternative faster). An interesting thing to note is that the

incremental objectives for all of the policies (except IE) were roughly equivalent for all

policies. This further reaffirms our belief that our while KG and online KG policies may

perform roughly as well as the others in finding the best alternative on each time step

to maximize the usage for one station, their ability to consider other stations in choosing

such an alternative makes them superior in maximizing the total usage over all stations

over all time steps.

6.2. Priors From Real Data

It is more interesting to examine the effects of our policies on priors generated from real

data, which has higher volatility and more unpredictability. Again, we notice that KG

outperforms all other policies with respects to the cumulative objective, and IE does

worse when maximum capacity is decreased, but not by as much. Furthermore, when the

data is not flat, KG seems to do better relative to when the data is flat in comparison

to other policies. With regards to opportunity cost, IE does horribly in comparison to

the test run with flat priors, which tells us that perhaps our modified IE policy is not

good for more volatile data. Another interesting thing of note is that with regards to the

incremental objective (choosing the station which will yield the highest usage on each

time step), KG does worse than other policies, yet at the same time it outperforms all of

the others in the cumulative objective. This further attests to our KG policy’s ability to

maximize over all locations rather than looking at just each location individually.

Remark. From the graphs, one may think that the difference in policy performance is

insignificant. But this is just due to the way the data scales very steeply with respect to

usage numbers. However, one can see that the difference is in fact significant. For
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example, Figure 24 shows the confidence intervals of each policy’s performance with

respect to the following objective:

ζ =
∞∑
t=1

∑
s∈St

γtU(s)

Which is the “truest” objective we wish to optimize over–namely optimizing total

station usage over an infinite horizon. From the figure, one can see that KG outperforms

all of the other policies, even within confidence levels.

Figure 24: Final Objectives on a 100 trial sample run with priors generated from real

data and a medium cap.

With this in mind, we conclude that KG does very well in comparison with other

policies when we look at the cumulative objective–maximizing usage over all stations.

Our IE policy often does well in minimizing opportunity costs when the data is relatively

flat–but often falls apart with respects to maximizing usage or when data becomes too

volatile.
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7. Future Work

Having completed this study, there is significant expansion that we can look into going

forward. The most direct expansion is simply by enlarging or shifting the context of

this study. While we believe our model captures reality sufficiently accurate for a city

setting such as Chicago, its transition to a rural or less structured setting seems somewhat

precarious. In particular, the lack of defined structure makes modelling these non-city

landscapes more difficult as graphs, meaning the very foundation of the model falls apart.

Furthermore, we can more deeply explore policies or modifications to existing

policies which more accurately capture the more problematic elements of our problem

formulation–namely the maximum capacity for stations and the splitting of demand

across different stations. Our KG policy formulated for this project somewhat captures

this splitting of demand, but we believe that it is possible to modify it further to further

capture this demand split.

In addition, time inhomogeneity appears to be a large extension of the current model,

for we assume each day incurs a relatively similar stream of people and that each hour sees

a similar number of people arriving. However, in its crudest form, time inhomogeneity

delineates great difference between the behavior of people on weekends vs. weekdays, or

during rush hour vs. late at night. Integrating this (possibly incorporating elements of

queueing theory) would greatly expand the accuracy and applicability of the model.

Finally, we could relax some of our constraints regarding the split of demand. Recall

that our definition for demand splitting completely depended on a constant ϕ which is

purely a weighted sum. In reality, this may not be as realistic, so more care should be

taken to develop a more accurate model for capturing the split of demand.
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9. Appendix

9.1. Policies

9.1.1. Boltzmann :

%{
Boltzmann Policy

notation for the following:
K is the number of alternatives.
M is the number of time-steps
K x M stands for a matrix with K rows and M columns

This function takes in
mu: true values for the mean (K x 1)
mu_0: prior for the mean (K x 1)
beta_W: measurement precision (1/lambda(x)) (K x 1)
covM: initial covariance matrix (K,K)
M: how many measurements will be made (scalar)
maxcap: maximum station capacity
dists: distances between stations
alpha: tunable parameter

And returns
mu_est: Final estimates for the means (K x 1)

OC: Opportunity cost at each iteration (1 x M)
choices: Alternatives picked at each iteration (1 x M)
mu_estALL: Estimates at each iteration (K x M)
%}

function [mu_est, OC, choices, mu_estALL]=Boltzmann(mu,mu_0,beta_W,covM,M, ...
maxcap, dists,alpha)

K=length(mu_0); %number of available choices

mu_est=mu_0; %estimates on LAMBDAs

OC=[];
choices=[];
mu_estALL=[];

for k=1:M % run Boltzmann M times

% calculate station demand if we put a station in place x
weights = ones(K,1);
for i = 1:length(choices)

for j = 1:K
weights(j) = weights(j) + exp(-log(2)*dists(j,choices(i)));
end

end
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demand = min(mu_est ./ weights, maxcap);

% Boltzmann policy
dice = rand;

% compute proability vector of choosing options
probs = exp(alpha*demand);
probs = probs / sum(probs);

% compute cumulates
i = length(probs);
x = 1;
while x < i

probs(x+1) = probs(x) + probs(x+1);
x = x + 1;

end
x = 1;
while probs(x) < dice && x < i

x = x + 1;
end

%observe the outcome of the decision
%W_k=mu_k+Z*SigmaW_k where SigmaW is standard deviation of the
%error for each observation

%U_k is what we observe
W_k=mu(x)+randn(1)*1./sqrt(beta_W(x));
U_k= min(W_k/weights(x), maxcap);

%updating equations are conditional on what we observe

e_x=zeros(K,1);
e_x(x)=1;

%special case: observe maxcap
if U_k == maxcap

W_k = sqrt(covM(x,x)) * normpdf((maxcap*weights(x)-mu_est(x))/ ...
sqrt(covM(x,x)))/(1-normcdf((maxcap*weights(x)-mu_est(x))/ ...
sqrt(covM(x,x)))) + mu_est(x);

var_artif = 1/beta_W(x) + covM(x,x);
addscalar = (W_k - mu_est(x))/(var_artif + covM(x,x));
mu_est=mu_est + addscalar*covM*e_x;
covM = covM - (covM*e_x*e_x'*covM)/((var_artif) + covM(x,x));

else
%standard updating equations for Normal-Normal model with covariance
addscalar = (W_k - mu_est(x))/(1/beta_W(x) + covM(x,x));
mu_est=mu_est + addscalar*covM*e_x;
covM = covM - (covM*e_x*e_x'*covM)/((1/beta_W(x)) + covM(x,x));

end

%pick the best one to compare OC
[max_est, max_choice]=max(mu_est);
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%calculate the opportunity cost
o_cost=max(mu)-mu(max_choice);

OC=[OC,o_cost]; %update the OC matrix
choices=[choices, x]; %update the choice matrix

if nargout>3 %if more than three outputs were asked
mu_estALL=[mu_estALL,mu_est];

end

end

end

9.1.2. Interval Estimation :

%{
IE Policy

notation for the following:
K is the number of alternatives.
M is the number of time-steps
K x M stands for a matrix with K rows and M columns

This function takes in
mu: true values for the mean (K x 1)
mu_0: prior for the mean (K x 1)
beta_W: measurement precision (1/lambda(x)) (K x 1)
covM: initial covariance matrix (K,K)
M: how many measurements will be made (scalar)
maxcap: maximum station capacity
dists: distances between stations
alpha: tunable parameter

And returns
mu_est: Final estimates for the means (K x 1)

OC: Opportunity cost at each iteration (1 x M)
choices: Alternatives picked at each iteration (1 x M)
mu_estALL: Estimates at each iteration (K x M)
%}

function [mu_est, OC, choices, mu_estALL]=IE(mu,mu_0,beta_W,covM,M, maxcap,...
dists,alpha)

K=length(mu_0); %number of available choices

mu_est=mu_0; %estimates on LAMBDAs
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OC=[];
choices=[];
mu_estALL=[];

for k=1:M % run IE M times

% calculate station demand if we put a station in place x
weights = ones(K,1);
for i = 1:length(choices)

for j = 1:K
weights(j) = weights(j) + exp(-log(2)*dists(j,choices(i)));
end

end

demand = min(mu_est ./ weights, maxcap);

% IE Policy
% the variance on demand is 1/phi^2 * variance(lambda)
v = min(demand + alpha * sqrt(diag(covM)) ./ weights, maxcap);

[max_value,x] = max(v);

%observe the outcome of the decision
%W_k=mu_k+Z*SigmaW_k where SigmaW is standard deviation of the
%error for each observation

%U_k is what we observe
W_k=mu(x)+randn(1)*1./sqrt(beta_W(x));
U_k= min(W_k/weights(x), maxcap);

%updating equations are conditional on what we observe

e_x=zeros(K,1);
e_x(x)=1;

%special case: observe maxcap
if U_k == maxcap

W_k = sqrt(covM(x,x)) * normpdf((maxcap*weights(x)-mu_est(x))/...
sqrt(covM(x,x)))/(1-normcdf((maxcap*weights(x)-mu_est(x))/...
sqrt(covM(x,x)))) + mu_est(x);

var_artif = 1/beta_W(x) + covM(x,x);
addscalar = (W_k - mu_est(x))/(var_artif + covM(x,x));
mu_est=mu_est + addscalar*covM*e_x;
covM = covM - (covM*e_x*e_x'*covM)/((var_artif) + covM(x,x));

else
%standard updating equations for Normal-Normal model with covariance
addscalar = (W_k - mu_est(x))/(1/beta_W(x) + covM(x,x));
mu_est=mu_est + addscalar*covM*e_x;
covM = covM - (covM*e_x*e_x'*covM)/((1/beta_W(x)) + covM(x,x));

end

%pick the best one to compare OC
[max_est, max_choice]=max(mu_est);
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%calculate the opportunity cost
o_cost=max(mu)-mu(max_choice);

OC=[OC,o_cost]; %update the OC matrix
choices=[choices, x]; %update the choice matrix

if nargout>3 %if more than three outputs were asked
mu_estALL=[mu_estALL,mu_est];

end

end

end

9.1.3. KG Correlated Beliefs – V1 :

%{
KG Policy

notation for the following:
K is the number of alternatives.
M is the number of time-steps
K x M stands for a matrix with K rows and M columns

This function takes in
mu: true values for the mean (K x 1)
mu_0: prior for the mean (K x 1)
beta_W: measurement precision (1/lambda(x)) (K x 1)
covM: initial covariance matrix (K,K)
M: how many measurements will be made (scalar)
maxcap: maximum station capacity
dists: distances between stations

And returns
mu_est: Final estimates for the means (K x 1)

OC: Opportunity cost at each iteration (1 x M)
choices: Alternatives picked at each iteration (1 x M)
mu_estALL: Estimates at each iteration (K x M)
%}

function [mu_est, OC, choices, mu_estALL]=KGCorrBeliefs1(mu,mu_0,beta_W,...
covM,M, maxcap, dists)

K=length(mu_0); %number of available choices

mu_est=mu_0; %estimates on LAMBDAs

OC=[];
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choices=[];
mu_estALL=[];

for k=1:M %exploit M times

% calculate station demand if we put a station in place x
weights = ones(K,1);
for i = 1:length(choices)

for j = 1:K
weights(j) = weights(j) + exp(-log(2)*dists(j,choices(i)));
end

end

demand = mu_est ./ weights;

%Plogy is the log values of KG for alternatives
Plogy=[];

for iter1=1:K
a=demand';
b=covM(iter1,:)./weights'/weights(iter1)/sqrt(1/beta_W(iter1) + ...

covM(iter1,iter1)/weights(iter1)^2);
[Plogy]=[Plogy, LogEmaxAffine(a,b)];

end

[maxh,x]=max(Plogy);

%observe the outcome of the decision
%W_k=mu_k+Z*SigmaW_k where SigmaW is standard deviation of the
%error for each observation

%U_k is what we observe
W_k=mu(x)+randn(1)*1./sqrt(beta_W(x));
U_k= min(W_k/weights(x), maxcap);

%updating equations are conditional on what we observe

e_x=zeros(K,1);
e_x(x)=1;

%special case: observe maxcap
if U_k == maxcap

W_k = sqrt(covM(x,x)) * normpdf((maxcap*weights(x)-mu_est(x))/...
sqrt(covM(x,x)))/(1-normcdf((maxcap*weights(x)-mu_est(x))/...
sqrt(covM(x,x)))) + mu_est(x);

var_artif = 1/beta_W(x) + covM(x,x);
addscalar = (W_k - mu_est(x))/(var_artif + covM(x,x));
mu_est=mu_est + addscalar*covM*e_x;
covM = covM - (covM*e_x*e_x'*covM)/((var_artif) + covM(x,x));

else
%standard updating equations for Normal-Normal model with covariance
addscalar = (W_k - mu_est(x))/(1/beta_W(x) + covM(x,x));
mu_est=mu_est + addscalar*covM*e_x;
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covM = covM - (covM*e_x*e_x'*covM)/((1/beta_W(x)) + covM(x,x));
end

%pick the best one to compare OC
[max_est, max_choice]=max(mu_est);

%calculate the opportunity cost
o_cost=max(mu)-mu(max_choice);

OC=[OC,o_cost]; %update the OC matrix
choices=[choices, x]; %update the choice matrix

if nargout>3 %if more than three outputs were asked
mu_estALL=[mu_estALL,mu_est];

end

end

end

9.1.4. KG Correlated Beliefs – V2 :

%{
Online KG Policy

notation for the following:
K is the number of alternatives.
M is the number of time-steps
K x M stands for a matrix with K rows and M columns

This function takes in
mu: true values for the mean (K x 1)
mu_0: prior for the mean (K x 1)
beta_W: measurement precision (1/lambda(x)) (K x 1)
covM: initial covariance matrix (K,K)
M: how many measurements will be made (scalar)
maxcap: maximum station capacity
dists: distances between stations

And returns
mu_est: Final estimates for the means (K x 1)

OC: Opportunity cost at each iteration (1 x M)
choices: Alternatives picked at each iteration (1 x M)
mu_estALL: Estimates at each iteration (K x M)
%}

function [mu_est, OC, choices, mu_estALL]=KGCorrBeliefs2(mu,mu_0,beta_W,...
covM,M, maxcap, dists, delta)
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K=length(mu_0); %number of available choices

mu_est=mu_0; %estimates on LAMBDAs

OC=[];
choices=[];
mu_estALL=[];

for k=1:M %exploit M times

% calculate station demand if we put a station in place x
weights = ones(K,1);
for i = 1:length(choices)

for j = 1:K
weights(j) = weights(j) + exp(-log(2)*dists(j,choices(i)));
end

end

demand = mu_est ./ weights;

%Plogy is the log values of KG for alternatives
Plogy=[];

for iter1=1:K
a=demand';
b=covM(iter1,:)./weights'/weights(iter1)/sqrt(1/beta_W(iter1) + ...

covM(iter1,iter1)/weights(iter1)^2);
[Plogy]=[Plogy, LogEmaxAffine(a,b)];

end

KG = exp(Plogy);

KG = demand' + delta*(1-delta^(M-k))/(1-delta)*KG;

[maxh,x]=max(KG);

%observe the outcome of the decision
%W_k=mu_k+Z*SigmaW_k where SigmaW is standard deviation of the
%error for each observation

%U_k is what we observe
W_k=mu(x)+randn(1)*1./sqrt(beta_W(x));
U_k= min(W_k/weights(x), maxcap);

%updating equations are conditional on what we observe

e_x=zeros(K,1);
e_x(x)=1;

%special case: observe maxcap
if U_k == maxcap

W_k = sqrt(covM(x,x)) * normpdf((maxcap*weights(x)-mu_est(x))/...
sqrt(covM(x,x)))/(1-normcdf((maxcap*weights(x)-mu_est(x))/...
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sqrt(covM(x,x)))) + mu_est(x);
var_artif = 1/beta_W(x) + covM(x,x);
addscalar = (W_k - mu_est(x))/(var_artif + covM(x,x));
mu_est=mu_est + addscalar*covM*e_x;
covM = covM - (covM*e_x*e_x'*covM)/((var_artif) + covM(x,x));

else
%standard updating equations for Normal-Normal model with covariance
addscalar = (W_k - mu_est(x))/(1/beta_W(x) + covM(x,x));
mu_est=mu_est + addscalar*covM*e_x;
covM = covM - (covM*e_x*e_x'*covM)/((1/beta_W(x)) + covM(x,x));

end

%pick the best one to compare OC
[max_est, max_choice]=max(mu_est);

%calculate the opportunity cost
o_cost=max(mu)-mu(max_choice);

OC=[OC,o_cost]; %update the OC matrix
choices=[choices, x]; %update the choice matrix

if nargout>3 %if more than three outputs were asked
mu_estALL=[mu_estALL,mu_est];

end

end

end

9.1.5. Pure Exploitation :

%{
Pure Exploitation Policy

notation for the following:
K is the number of alternatives.
M is the number of time-steps
K x M stands for a matrix with K rows and M columns

This function takes in
mu: true values for the mean (K x 1)
mu_0: prior for the mean (K x 1)
beta_W: measurement precision (1/lambda(x)) (K x 1)
covM: initial covariance matrix (K,K)
M: how many measurements will be made (scalar)
maxcap: maximum station capacity
dists: distances between stations

And returns
mu_est: Final estimates for the means (K x 1)
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OC: Opportunity cost at each iteration (1 x M)
choices: Alternatives picked at each iteration (1 x M)
mu_estALL: Estimates at each iteration (K x M)
%}

function [mu_est, OC, choices, mu_estALL]=PureExploit(mu,mu_0,beta_W,covM,...
M, maxcap, dists)

K=length(mu_0); %number of available choices

mu_est=mu_0; %estimates on LAMBDAs

OC=[];
choices=[];
mu_estALL=[];

for k=1:M %exploit M times

% calculate station demand if we put a station in place x
weights = ones(K,1);
for i = 1:length(choices)

for j = 1:K
weights(j) = weights(j) + exp(-log(2)*dists(j,choices(i)));
end

end

demand = mu_est ./ weights;

[max_value, x] = max(demand);
%max_value is the best estimated value of the demand
%x is the argument that produces max_value

%observe the outcome of the decision
%W_k=mu_k+Z*SigmaW_k where SigmaW is standard deviation of the
%error for each observation

%U_k is what we observe
W_k=mu(x)+randn(1)*1./sqrt(beta_W(x));
U_k= min(W_k/weights(x), maxcap);

%updating equations are conditional on what we observe

e_x=zeros(K,1);
e_x(x)=1;

%special case: observe maxcap
if U_k == maxcap

W_k = sqrt(covM(x,x)) * normpdf((maxcap*weights(x)-mu_est(x))/...
sqrt(covM(x,x)))/(1-normcdf((maxcap*weights(x)-mu_est(x))/...
sqrt(covM(x,x)))) + mu_est(x);

var_artif = 1/beta_W(x) + covM(x,x);
addscalar = (W_k - mu_est(x))/(var_artif + covM(x,x));
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mu_est=mu_est + addscalar*covM*e_x;
covM = covM - (covM*e_x*e_x'*covM)/((var_artif) + covM(x,x));

else
%standard updating equations for Normal-Normal model with covariance
addscalar = (W_k - mu_est(x))/(1/beta_W(x) + covM(x,x));
mu_est=mu_est + addscalar*covM*e_x;
covM = covM - (covM*e_x*e_x'*covM)/((1/beta_W(x)) + covM(x,x));

end

%pick the best one to compare OC
[max_est, max_choice]=max(mu_est);

%calculate the opportunity cost
o_cost=max(mu)-mu(max_choice);

OC=[OC,o_cost]; %update the OC matrix
choices=[choices, x]; %update the choice matrix

if nargout>3 %if more than three outputs were asked
mu_estALL=[mu_estALL,mu_est];

end

end

end
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9.2. Auxiliary

9.2.1. Log Transform :

% logy = LogEmaxAffine(a,b)
% Calculates log(Exp[max_x a_x + b_x Z]-max_x a_x), where Z is a standard
% normal random variable and a,b are 1xM input vectors.
function [logy, a,b,c] = LogEmaxAffine(a,b)

if (any(isnan(a)) || any(isnan(b)))
warning('a or b is NaN');

end
assert(all(isreal(a)));
assert(all(isreal(b)));

[dummy1,dummy2]=size(a);
if dummy2>dummy1

a=a';
end

[dummy1,dummy2]=size(b);
if dummy2>dummy1

b=b';
end

% Check that a and b are column vectors of the right size
if (any(size(a) ~= size(b)))

error('LogEmaxAffine: a and b must be column vectors of the same size');
end

[a,b] = AffineBreakpointsPrep(a,b);

[c, keep] = AffineBreakpoints(a,b);
a = a(keep);
b = b(keep);
c = c([1,keep+1]);
M = length(keep);
assert(all(isreal(c)));

% I need logbdiff=log(diff(b)). I thought that the following code would be
% more numerically stable, able for example to distinguish cases like
% logb = [-25 -.3] vs. logb = [-35 -.3], but it doesn't seem to be able to.
% Indeed, in the debugging output that I have below, the difference was 0.
%{
logb = log(abs(b)); % If b is 0, this is -Inf.
sgnb = sign(b); % If b is 0, this is 0.
logbdiff = zeros(size(c(2:M)));
for i=1:length(b)-1
[logbdiff(i),logbdiffsgn] = LogPlusExpSigned(logb(i),sgnb(i),logb(i+1),...
-sgnb(i+1));
%assert(logbdiffsgn>=0); % The b are distinct, so bdiff(i) can't be 0.
end
disp(sprintf('log(b)=%s log(diff(b))=%g logbdiff=%g difference=%g',...
mat2str(log(b)),log(diff(b)),logbdiff,log(diff(b))-logbdiff));
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%}
logbdiff = log(diff(b))';

if M==1
logy=log(a);

elseif M>=2
logy = LogSumExp(logbdiff+LogEI(-abs(c(2:M))));

end

logy=real(logy);
end
% Prepares vectors for passing to AffineEmaxBreakpoints, changing their
% order and removing elements with duplicate slope.

function [a,b] = AffineBreakpointsPrep(a,b)
% Make sure a and b are column vectors.
rows = size(a); if (rows == 1), a=a'; end
rows = size(b); if (rows == 1), b=b'; end

% 11/29/2008 PF: Experimental preprocessing step, which I hope will remove
% a large number of the entries.
[b1, i1] = min(b); % [a1,b1] is best at z=-infinity
[a2, i2] = max(a); % [a2,b2] is best at z=0
[b3, i3] = max(b); % [a3,b3] is best at z=+infinity
a1 = a(i1);
b2 = b(i2);
a3 = a(i3);
cleft = (a - a1)./(b1 - b); % intersection with leftmost line.
cright = (a - a3)./(b3 - b); % intersection with rightmost line.
c2left = (a2 - a1)./(b1 - b2); % intersection with leftmost line.
c2right = (a2 - a3)./(b3 - b2); % intersection with rightmost line.
keep = find(b==b1 | b==b3 | cleft <= c2left | cright >= c2right);
%disp(sprintf('Preprocessing cut %d of %d entries', length(a)-length(keep),
% length(a)));
a = a(keep);
b = b(keep);
clear keep cleft cright

% Form a matrix for which ba(x,1) is the slope b(x) and ba(x,2) is the
% y-intercept a(x). Sort this matrix in ascending order of slope,
% breaking ties in slope with the y-intercept.
ba = [b, a];
ba = sortrows(ba,[1,2]);
a = ba(:,2);
b = ba(:,1);

% Then, from each pair of indices with the b component equal, remove
% the one with smaller a component. This code works because the sort
% above enforced the condition: if b(i) == b(i+1), then a(i) <= a(i+1).
keep = [find(diff(b)); length(b)];
% This previous line is equivalent to:
% keep = [];
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% for i=[1:length(b)-1]
% if b(i)~=b(i+1)
% keep = [keep, i];
% end
%end
%keep = [keep, length(b)]; % We always keep the last one.

% Note that the elements of keep are in ascending order.
% This makes it so that b(keep) is still sorted in ascending order.
a = a(keep);
b = b(keep);

end

% Inputs are two M-vectors, a and b.
% Requires that the b vector is sorted in increasing order.
% Also requires that the elements of b all be unique.
% This function is used in AffineEmax, and the preparation of generic
% vectors a and b to satisfy the input requirements of this function are
% shown there.
%
% The output is an (M+1)-vector c and a vector A ("A" is for accept). Think of
% A as a set which is a subset of {1,...,M}. This output has the property
% that, for any i in {1,...,M} and any real number z,
% i \in argmax_j a_j + b_j z
% iff
% i \in A and z \in [c(j+1),c(i+1)],
% where j = sup {0,1,...,i-1} \cap A.
%
% A note about indexing:
% Since Matlab does not allow indexing from 0, but instead requires
% indexing from 1, what is called c_i in the paper is written in matlab as
% c(1+i). This is because in the paper we reference c_0. For the vectors
% a and b, however, we don't need to reference a_0 or b_0, so we reference
% a_i and b_i by a(i) and b(i) respectively, rather than a(i+1) or b(i+1).
%
function [c,A] = AffineBreakpoints(a,b)

% Preallocate for speed. Instead of resizing the array A whenever we add
% to it or delete from it, we keep it the maximal size, and keep a length
% indicator Alen telling us how many of its entries are good. When the
% function ends, we remove the unused elements from A before passing
% it.
M = length(a);
c = zeros(1,M+1);
A = zeros(1,M);

% Step 0
i=0;
c(1+i) = -inf;
c(1+i+1) = +inf;
A(1) = 1;
Alen = 1;

for i=[1:M-1]
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c(1+i+1) = +inf;
while(1)

j = A(Alen); % jindex = Alen
c(1+j) = (a(j) - a(i+1))/(b(i+1)-b(j));

% The if statement below replaces these lines from version 2 of the
% function.
% kindex = jindex-1 = Alen-1

% if kindex > 0 && c(1+j)<=c(1+A(kindex))
if Alen > 1 && c(1+j)<c(1+A(Alen-1))

Alen = Alen-1; % Remove last element j
% continue in while(1) loop

else
break % quit while(1) loop

end
end

A(Alen+1) = i+1;
Alen = Alen + 1;
end
A = A(1:Alen);

end

% Returns the log of Exp[(s+Z)^+], where s is a constant and Z is a standard
% normal random variable. For large negative arguments Exp[(s+Z)^+] function
% is close to 0. For large positive arguments, the function is close to the
% argument. For s large enough, s>-10, we use the formula
% Exp[(s+Z)^+] = s*normcdf(s) + normpdf(s). For smaller s we use an asymptotic
% approximation based on Mill's ratio. EI stands for "expected improvement",
% since Exp[(s+Z)^+] would be the log of the expected improvement by measuring
% an alternative with excess predictive mean s over the best other measured
% alternative, and predictive variance 0.
function logy = LogEI(s)

% Use the asymptotic approximation for these large negative s. The
% approximation is derived via:
% s*normcdf(s) + normpdf(s) = normpdf(s)*[1-|s|normcdf(-|s|)/normpdf(s)]
% and noting that normcdf(-|s|)/normpdf(s) is the Mill's ratio at |s|, which is
% asymptotically approximated by |s|/(s^2+1) [Gordon 1941, also documented in
% Frazier,Powell,Dayanik 2009 on page 14]. This gives,
% s*normcdf(s) + normpdf(s) = normpdf(s)*[1-s^2/(s^2+1)] = normpdf(s)/(s^2+1).

i=find(s<-10);
if (length(i)>0)

logy(i) = LogNormPDF(s(i)) - log(s(i).^2 + 1);
end

% Use straightforward routines for s in the more numerically stable region.
i=find(s>=-10);
if (length(i)>0)

logy(i) = log(s(i).*normcdf(s(i))+normpdf(s(i)));
end

assert(all(isreal(logy)));
end
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% logy = LogNormPDF(z)
% Returns the log of the normal pdf evaluated at z. z can be a vector or a scalar.
function logy = LogNormPDF(z)

const = -.5*log(2*pi); % log of 1/sqrt(2pi).
logy = const - z.^2/2;

end

% function y=LogSumExp(x)
% Computes log(sum(exp(x))) for a vector x, but in a numerically careful way.
function y=LogSumExp(x)
xmax = max(x);
y = xmax + log(sum(exp(x-xmax)));
end

9.2.2. Compute Objective :

% Computes the objective, given a list of choices at each time step
% a list of truths, a list of distances, a maxcap, and a discount factor
function [obj,total] = computeObj(choices, truths, dists, maxcap, delta)

M = length(choices);
K = length(truths);
obj = zeros(1,M+1);

for k = 1:M

% calculate weights and demands
weights = zeros(1,K);
for i = 1:K

for j = 1:k
weights(i) = weights(i) + exp(-log(2)*dists(i,choices(j)));

end
end
currobj = 0;
for i = 1:k

currobj = currobj + min(truths(choices(i))/weights(choices(i)),maxcap);
end
obj(k+1) = delta * (currobj + obj(k));

end
if delta >= 1

total = NaN;
else
total = currobj / (1-delta) * delta^(M+2) + obj(M+1);
end

% Computes the objective, given a list of choices at each time step
% a list of truths, a list of distances, a maxcap, and a discount factor
function obj = computeObj2(choices, truths, dists, maxcap, delta)

M = length(choices);
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K = length(truths);
obj = zeros(1,M+1);

for k = 1:M

% calculate weights and demands
weights = zeros(1,K);
for i = 1:K

for j = 1:k
weights(i) = weights(i) + exp(-log(2)*dists(i,choices(j)));

end
end
currobj = min(truths(choices(k))/weights(choices(k)),maxcap);
obj(k+1) = delta * (currobj + obj(k));

end
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9.3. Run Policies

:

% Main Code for testing

% Part 1, read in prior data
% Means
% DAILY TRAFFIC times 0.66% to estimate EV traffic
% EV traffic times 10% to estimate station usage per day
% Station usage times 14 for two week station usage

K = 100;
M = 15;

c = 0.0066 * 14/10;

% priormeans.xlsx contains daily traffic data times 0.0066
priorest = 14/10*xlsread('priormeans.xlsx');

% Variances
priorvars = 5/4 * c^2 * xlsread('priorvars.xlsx') + 1/4 * c^2 * priorest.^2;

% convert means and variances to 1 dimensional vectors (down and then
% right)
priorest = reshape(priorest,[1,K]);
priorvars = reshape(priorvars,[1,K]);

% create distance matrix between points
dists = zeros(K,K);
for i = 1:K

for j = 1:K
% |i mod 10 - j mod 10| is vertical distance, |i/10 - j/10| is
% horizontal distance in nodes. Vertical node distance is 0.9 km,
% horizontal node distance is 0.4 km.
dists(i,j) = 0.9*abs(mod(i-1,10)-mod(j-1,10)) + 0.4*abs(floor((i-1)/10)-...

floor((j-1)/10));
end

end

% create covariance matrix

cov = zeros(K,K);
for i = 1:K

for j = 1:K
cov(i,j) = exp(-log(2)/3*dists(i,j)) * sqrt(priorvars(i) * priorvars(j));

end
end
N = 100;
beta_W = 1/100*ones(K,1);
maxcap = 200;

OC1 = zeros(100,15);
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OC2 = zeros(100,15);
OC3 = zeros(100,15);
OC4 = zeros(100,15);
OC5 = zeros(100,15);

choices = zeros(5,100,15);
objExploit = zeros(N,M+1);
objIE = zeros(N,M+1);
objBoltz = zeros(N,M+1);
objKG = zeros(N,M+1);
objKGO = zeros(N,M+1);

obj2Exploit = zeros(N,M+1);
obj2IE = zeros(N,M+1);
obj2Boltz = zeros(N,M+1);
obj2KG = zeros(N,M+1);
obj2KGO = zeros(N,M+1);
T1 = zeros(1,N);
T2 = zeros(1,N);
T3 = zeros(1,N);
T4 = zeros(1,N);
T5 = zeros(1,N);
delta = 0.98;

for i = 1:N
truth = (priorest' + chol(cov) * randn(K,1));

[~, OC1(i, :), choices(1,i, :)] = PureExploit(truth, priorest', beta_W,...
cov, M, maxcap, dists);

[~, OC2(i, :), choices(2,i, :)] = IE(truth, priorest', beta_W, cov, M,...
maxcap, dists, 3);

[~, OC3(i, :), choices(3,i, :)] = Boltzmann(truth, priorest', beta_W, ...
cov, M, maxcap, dists, 0.75);

[~, OC4(i, :), choices(4,i, :)] = KGCorrBeliefs1(truth, priorest', ...
beta_W, cov, M, maxcap, dists);

[~, OC5(i, :), choices(5,i, :)] = KGCorrBeliefs2(truth, priorest', ...
beta_W, cov, M, maxcap, dists,delta);

[objExploit(i,:), T1(i)] = computeObj(choices(1,i,:),truth,dists,maxcap,delta);
[objIE(i,:),T2(i)] = computeObj(choices(2,i,:),truth,dists,maxcap,delta);
[objBoltz(i,:),T3(i)] = computeObj(choices(3,i,:),truth,dists,maxcap,delta);
[objKG(i,:),T4(i)] = computeObj(choices(4,i,:),truth,dists,maxcap,delta);
[objKGO(i,:),T5(i)] = computeObj(choices(5,i,:),truth,dists,maxcap,delta);
obj2Exploit(i,:) = computeObj2(choices(1,i,:),truth,dists,maxcap,delta);
obj2IE(i,:) = computeObj2(choices(2,i,:),truth,dists,maxcap,delta);
obj2Boltz(i,:) = computeObj2(choices(3,i,:),truth,dists,maxcap,delta);
obj2KG(i,:) = computeObj2(choices(4,i,:),truth,dists,maxcap,delta);
obj2KGO(i,:) = computeObj2(choices(5,i,:),truth,dists,maxcap,delta);

end

figure(1)
hold on;
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plot(0:M,mean(objExploit));
plot(0:M,mean(objIE));
plot(0:M,mean(objBoltz));
plot(0:M,mean(objKG));
plot(0:M,mean(objKGO));
xlabel('Station Number');
ylabel('Cummulative Objective');
legend('Exploit','IE','Boltzmann','KG','OnlineKG');

figure(2)
hold on;
plot(1:M, mean(OC1));
plot(1:M, mean(OC2));
plot(1:M, mean(OC3));
plot(1:M, mean(OC4));
plot(1:M, mean(OC5));
xlabel('Station Number');
ylabel('Opportunity Cost');
legend('Exploit','IE','Boltzmann','KG','Online KG');

figure(3)
hold on;
plot(0:M,mean(obj2Exploit));
plot(0:M,mean(obj2IE));
plot(0:M,mean(obj2Boltz));
plot(0:M,mean(obj2KG));
plot(0:M,mean(obj2KGO));
xlabel('Station Number');
ylabel('Cummulative Objective');
legend('Exploit','IE','Boltzmann','KG','Online KG');

mean(T1)
mean(T2)
mean(T3)
mean(T4)
mean(T5)

zCI = 1.96;
L1 = mean(T1) - std(T1)/sqrt(N)*zCI;
L2 = mean(T2) - std(T2)/sqrt(N)*zCI;
L3 = mean(T3) - std(T3)/sqrt(N)*zCI;
L4 = mean(T4) - std(T4)/sqrt(N)*zCI;
L5 = mean(T5) - std(T5)/sqrt(N)*zCI;

R1 = mean(T1) + std(T1)/sqrt(N)*zCI;
R2 = mean(T2) + std(T2)/sqrt(N)*zCI;
R3 = mean(T3) + std(T3)/sqrt(N)*zCI;
R4 = mean(T4) + std(T4)/sqrt(N)*zCI;
R5 = mean(T5) + std(T5)/sqrt(N)*zCI;

%showing CI of final objs
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figure(4);
hold on;
plot([L1;R1],[1,1],'-d');
plot([L2;R2],[2,2],'-d');
plot([L3;R3],[3,3],'-d');
plot([L4;R4],[4,4],'-d');
plot([L5;R5],[5,5],'-d');
ylim([0 6]);
legend('Exploit','IE','Boltzmann','KG','Online KG');

% Main Code for testing

% Part 1, read in prior data
% Means
% DAILY TRAFFIC times 0.66% to estimate EV traffic
% EV traffic times 10% to estimate station usage per day
% Station usage times 14 for two week station usage

K = 100;
M = 15;

priorest = 100*ones(1,K);
priorvars = 36^2*ones(1,K);

% create distance matrix between points
dists = zeros(K,K);
for i = 1:K

for j = 1:K
% |i mod 10 - j mod 10| is vertical distance, |i/10 - j/10| is
% horizontal distance in nodes. Vertical node distance is 0.9 km,
% horizontal node distance is 0.4 km.
dists(i,j) = abs(mod(i-1,10)-mod(j-1,10)) + abs(floor((i-1)/10)-...

floor((j-1)/10));
end

end

% create covariance matrix

cov = zeros(K,K);
for i = 1:K

for j = 1:K
cov(i,j) = exp(-log(2)/2*dists(i,j)) * sqrt(priorvars(i) * priorvars(j));

end
end
N = 100;
beta_W = 0.5* ones(K,1);
maxcap = 50;

OC1 = zeros(100,15);
OC2 = zeros(100,15);
OC3 = zeros(100,15);
OC4 = zeros(100,15);
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OC5 = zeros(100,15);

choices = zeros(5,100,15);
objExploit = zeros(N,M+1);
objIE = zeros(N,M+1);
objBoltz = zeros(N,M+1);
objKG = zeros(N,M+1);
objKGO = zeros(N,M+1);

obj2Exploit = zeros(N,M+1);
obj2IE = zeros(N,M+1);
obj2Boltz = zeros(N,M+1);
obj2KG = zeros(N,M+1);
obj2KGO = zeros(N,M+1);
T1 = zeros(1,N);
T2 = zeros(1,N);
T3 = zeros(1,N);
T4 = zeros(1,N);
T5 = zeros(1,N);

delta = 0.98;

for i = 1:N
truth = (priorest' + chol(cov) * randn(K,1));

[~, OC1(i, :), choices(1,i, :)] = PureExploit(truth, priorest', beta_W,...
cov, M, maxcap, dists);

[~, OC2(i, :), choices(2,i, :)] = IE(truth, priorest', beta_W, cov, M,...
maxcap, dists, 3);

[~, OC3(i, :), choices(3,i, :)] = Boltzmann(truth, priorest', beta_W,...
cov, M, maxcap, dists, 0.75);

[~, OC4(i, :), choices(4,i, :)] = KGCorrBeliefs1(truth, priorest',...
beta_W, cov, M, maxcap, dists);

[~, OC5(i, :), choices(5,i, :)] = KGCorrBeliefs2(truth, priorest', ...
beta_W, cov, M, maxcap, dists,delta);

[objExploit(i,:), T1(i)] = computeObj(choices(1,i,:),truth,dists,maxcap,delta);
[objIE(i,:),T2(i)] = computeObj(choices(2,i,:),truth,dists,maxcap,delta);
[objBoltz(i,:),T3(i)] = computeObj(choices(3,i,:),truth,dists,maxcap,delta);
[objKG(i,:),T4(i)] = computeObj(choices(4,i,:),truth,dists,maxcap,delta);
[objKGO(i,:),T5(i)] = computeObj(choices(5,i,:),truth,dists,maxcap,delta);
obj2Exploit(i,:) = computeObj2(choices(1,i,:),truth,dists,maxcap,delta);
obj2IE(i,:) = computeObj2(choices(2,i,:),truth,dists,maxcap,delta);
obj2Boltz(i,:) = computeObj2(choices(3,i,:),truth,dists,maxcap,delta);
obj2KG(i,:) = computeObj2(choices(4,i,:),truth,dists,maxcap,delta);
obj2KGO(i,:) = computeObj2(choices(5,i,:),truth,dists,maxcap,delta);

end

figure(1)
hold on;
plot(0:M,mean(objExploit));
plot(0:M,mean(objIE));
plot(0:M,mean(objBoltz));
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plot(0:M,mean(objKG));
plot(0:M,mean(objKGO));
xlabel('Station Number');
ylabel('Cummulative Objective');
legend('Exploit','IE','Boltzmann','KG','OnlineKG');

figure(2)
hold on;
plot(1:M, mean(OC1));
plot(1:M, mean(OC2));
plot(1:M, mean(OC3));
plot(1:M, mean(OC4));
plot(1:M, mean(OC5));
xlabel('Station Number');
ylabel('Opportunity Cost');
legend('Exploit','IE','Boltzmann','KG','Online KG');

figure(3)
hold on;
plot(0:M,mean(obj2Exploit));
plot(0:M,mean(obj2IE));
plot(0:M,mean(obj2Boltz));
plot(0:M,mean(obj2KG));
plot(0:M,mean(obj2KGO));
xlabel('Station Number');
ylabel('Cummulative Objective');
legend('Exploit','IE','Boltzmann','KG','Online KG');

mean(T1)
mean(T2)
mean(T3)
mean(T4)
mean(T5)

L1 = mean(T1) - std(T1)/sqrt(N)*1.96;
L2 = mean(T2) - std(T2)/sqrt(N)*1.96;
L3 = mean(T3) - std(T3)/sqrt(N)*1.96;
L4 = mean(T4) - std(T4)/sqrt(N)*1.96;
L5 = mean(T5) - std(T5)/sqrt(N)*1.96;

R1 = mean(T1) + std(T1)/sqrt(N)*1.96;
R2 = mean(T2) + std(T2)/sqrt(N)*1.96;
R3 = mean(T3) + std(T3)/sqrt(N)*1.96;
R4 = mean(T4) + std(T4)/sqrt(N)*1.96;
R5 = mean(T5) + std(T5)/sqrt(N)*1.96;
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