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1 Introduction

Throughout the past semester, I have learned a great deal regarding analysis, particularly in its applications

to number theory. Prior to the seminar, I had little exposure to the applications of many analysis results

but now see their wide reaching scopes. In this paper, I present a thorough breakdown of the two talks I

gave in the semester, namely the first regarding Singular Integrals and the second about a key lemma in the

two-squares proof.

2 Singular Method/Integral

2.1 Introduction

In this lecture, I will be picking up from where the previous lecture left off, namely after defining the Aq. The

end result of this lecture will be demonstrating that ∀d ≥ 5, for all sufficiently large n, n can be represented

as a sum of d squares. To reach that conclusion, however, we need to bound the terms/summations and

calculate the specific numerical results, which I hope to do in the next 40 minutes.

So, the basic outline of the lecture is as follows:

1. Discuss the singular series

2. Bound the singular series and its error term

3. Discuss the singular integral as it relates to calculating rn

4. Conclude by bounding the error term

2.2 Proposition 4.5

Having proven the above result about Aq, we proceed to demonstrate that this series has a convergent tail

and is bounded. More specifically, we have the singular series (for d ≥ 5),

S =

∞∑
q=1

Aq(n)

converges absolutely, specifically with

∞∑
q>R

Aq(n) = O(R2−d/2)

∀R ≥ 1. Further, ∃C1, C2 such that:

C1 ≤ |S| ≤ C2

There are three main parts of this proof:

1. We demonstrate that this original summation is bounded, and so is a similarly defined variant ψq(n)

2. This leads us to formulate the Aq(n) as an infinite product (and prove their equality)

3. We bound this infinite product from above and below non-trivially
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2.2.1 Singular series convergence

Namely, by definition, we have that:

Aq(n) =
∑

1≤p≤q
(p,q)=1

q−dS(p/q)de−2πip/q

Where the S(p/q) are themselves Gauss sums we have already discussed, defined as:

S(p/q) =
∑
1≤n‘q

e2πin
2p/q

From Tim’s lectures, we have the values for S(p/q), whenever (p, q) = 1, which were:

√
q q ≡ 1 mod 4

i
√
q q ≡ 3 mod 4

0 q ≡ 2 mod 4

eiπ/4
√

2q q ≡ 0 mod 4

Applying this, we have:

|Aq(n)| = |
∑

1≤p≤q
(p,q)=1

q−dS(p/q)de−2πip/q| ≤
∑

1≤p≤q
(p,q)=1

|q−dS(p/q)de−2πip/q| (1)

=
∑

1≤p≤q
(p,q)=1

|q−d||S(p/q)d||e−2πip/q| =
∑

1≤p≤q
(p,q)=1

|q−d||S(p/q)d| (2)

Thus, if q ≡ 1 mod 4 or q ≡ 3 mod 4, then |S(p/q)d| = |√qd|, if q ≡ 3 mod 4 then the term is 0, and if

q ≡ 0 mod 4 then |S(p/q)d| = |
√

2q
d|. Thus,

Aq(n) ≤


∑

1≤p≤q |q−d/2| q ≡ 1 mod 4orq ≡ 3 mod 4

0 q ≡ 2 mod 4

2d/2
∑

1≤p≤q |q−d/2| q ≡ 0 mod 4

Since
∑

1≤p≤q |q−d/2| = |q−d/2|
∑

1≤p≤q 1 = q1−d/2, we have the desired bounds that:

|Aq(n)| ≤ cdq1−d/2

Where cd = 1 for the odd cases and 2d/2−1 for the 0 case. Thus, with these bounds, we can bound the sum

as:

∞∑
q=1

|Aq(n)| = O(

∞∑
q=1

q1−d/2)

Since we can ignore the constants for bounding these error terms. From this, we can see that the series

converges whenever we have the exponent ≤ −1, corresponding to a d ≥ 5.

To now obtain the bound that we wanted to exhibit, we see that the tail of the series satisfies:∑
q>R

|Aq(n)| = O(
∑
q>R

q1−d/2) = O(
∑
q>R

R1−d/2)

Since d ≥ 5, meaning the exponent 1 − d/2 < −1 and that the function is decreasing in q, allowing us to

bound the sum by considering the minimal element in the restricted domain.

3



Yash Patel Analysis Junior Seminar: Final Paper

With that, we now consider the other series:

ψq(n) = 1 +

∞∑
j=1

Aqj (n)

Whenever q is prime. We define this seemingly random series because it will turn out that S can be written

as an infinite product of these ψq(n), which is insane. Before reaching that point, though, let’s investigate

some of its properties. Let’s consider any prime 6= 2, that is, any odd prime. In that case:

|ψq(n)− 1| = |
∞∑
j=1

Aqj (n)| (3)

≤
∞∑
j=1

(qj)1−d/2 =

∞∑
j=1

(q1−d/2)j (4)

=
q1−d/2

1− q1−d/2
=

1

qd/2−1 − 1
(5)

Which converges whenever d ≥ 5. For the case of q = 2, we have that A2(n) = 0, so:

|ψ2(n)− 1| ≤ 1

2d/2−1 − 1

So, putting it all together, we have that the sum:∑
q prime

|ψq(n)− 1| ≤
∑

q prime

1

qd/2−1 − 1

By a theorem in complex analysis, the absolute convergence of this sum implies the convergence of the

infinite product of the ψq(n), meaning that it now makes sense to discuss its value.

2.2.2 Infinite product formulation (Prop 4.13)

Having proven the convergence, we now consider the following proposition about the infinite product of

ψq(n):

S =

∞∑
q=1

Aq(n) =
∏

q prime

ψq(n)

This follows immediately from another lemma of the multiplicative properties of Aq(n). Specifically:

If (q1, q2) = 1, Aq1,q2(n) = Aq1(n)Aq2(n)

The desired infinite product is clear by the fact that we can write any q ∈ Z as a product of primes (by the

fundamental theorem of arithmetic), meaning we can write any Aq(n) = Aq1q2...qj (n) =
∏j
i=1Aqi(n), which

exactly defines how the infinite product is defined.

Thus, the only thing left to prove is this lemma. If we have (p1, q1) = (p2, q2) = (q1, q2), by a previous

proposition:

S

(
p1q2 + p2q1

q1q2

)
= S(p1/q1)S(p2/q2)

Thus, we can simplify this as:

Aq1(n)Aq2(n) =
∑

p1modq1
(p1,q1)=1

∑
p2modq2
(p2,q2)=1

q−d1 q−d2 S(p1/q1)dS(p2/q2)de−πin(p1/q1+p2/q2)
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=
∑

p1modq1
(p1,q1)=1

∑
p2modq2
(p2,q2)=1

(q1q2)−dS

(
p1q2 + p2q1

q1q2

)d
e−πin(p1/q1+p2/q2)

Which is = Aq1q2(n) since these values are relatively prime.

2.2.3 Bounding the sum

Finally, we conclude the proof by bounding this infinite product. Since we already showed that:

|ψq(n)− 1| ≤ 1

qd/2−1 − 1
< 1

|ψq(n)| ≥ 1 (if it were = 0, then the LHS would be 1), meaning that it is non-trivially bounded below,

as desired. Specifically, since this only converges for d ≥ 5, we consider such values, meaning that (for all

relevant d)

|ψq(n)− 1| ≤ 1

q3/2 − 1
< 1

Explicitly, these bounds are:

∏
q prime

(
1− 1

q3/2 − 1

)
≤ |S(n)| ≤

∏
q prime

(
1 +

1

q3/2 − 1

)
Completing the desired proof.

2.3 Proposition 4.6

From here, we see that, intuitively, the larger the N , the smaller the error in approximating the infinite

series by a finite one. We now look separately at bounding the singular integral that was actually used to

relate rd and Aq(n), with the following proposition:

The singular integral ∀s > 1:

eπ
∫ ∞
−∞

(1− 2ix)−se−2πixdx =
πs

Γ(s)

Further, ∀S ≥ 1 and s ≥ 1: ∫
|x|≥S

(1− 2ix)−se−2πix = O(S1−s)

Proof: This follows from section 4.4.4. Specifically, it follows as a standard evaluation of residues on a

contour integral. Since this is a fairly standard residue calculation I will prove the tail bound portion but

will just discuss the result of the residue calculation. Namely, for the tail, we consider all x sufficiently large,

that is |x| > S for:

∫
|x|≥S

|(1− ix)−se−πix|dx =

∫
|x|≥S

|(1− ix)−s|dx =

∫
|x|≥S

|
√

1 + x2|−sdx ≤
∫
|x|≥S

x−s = O(S1−s)

With these two results in hand, we can trek forward and nearly arrive at the piece de resistance.
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2.4 Putting it Together

From this result, we’re able to replace the integral that was in the original 4.9 expression. However, the

original integral was a finite calculation, namely over the interval: N2I ′(p/q) of the form:∫
N2I′(p/q)

(1− 2ix)−d/2e−2πixdx

Thus, in approximating this integral as an infinite integral (as we are from the result of Proposition 4.6),

we incur an error term, particularly from the complement of N2I ′(p/q). From Proposition 4.6, however, we

have a bound for this tail estimate. To apply this bound, we just need to show that the x ∈ the complement

of N2I ′(p/q) are ≥ 1, which we achieve simply by taking N ≤
√
n.

With that, we now proceed through the last stages of bounding. Namely, by definition and now applying

the previous calculation we did, with s = d/2 and S = n/Nq (for the singular integral):

rd(n) = Nd−2eπn/N
2 ∑
1≤q≤N

Aq(n)

∫
N2I′(p/q)

(1− 2ix)−d/2e−2πixdx+O(Nd/2)

= nd/2−1
∑

1≤q≤N

Aq(n)
πd/2

Γ(d/2)
+ Er

Where Er is our error term. This is where we apply the final bounding result that we demonstrated for the

singular series. Specifically (although it’s quite ugly):

Er = O(nd/2−1
∑

1≤q≤N

|Aq(n)|
(
n

qN

)1−d/2

) +O(nd/4)

Since we demonstrated previously

|Aq(n)| ≤ cdq1−d/2

, this is bounded by:

Er ≤ O(nd/2−1
∑

1≤q≤N

cdq
1−d/2

(
n

qN

)1−d/2

) +O(nd/4)

O(nd/2−1
∑

1≤q≤N

( n
N

)1−d/2
) +O(nd/4) = O(

∑
1≤q≤N

(1/N)1−d/2) +O(nd/4) = O(Nd/2) +O(nd/4)

Since N ≤
√
n, we have O(Nd/2) is O(nd/4, meaning the overall error term too is O(nd/4, as desired. The

final piece is changing the finite sum in the above definition of rd(n) to an infinite sum. Namely, if we apply

the bound we demonstrated for the tail of the infinite sum of |Aq(n)| to a radius of N , we incur an error

term of O(nd/2−1N2−d/2), which is once again O(nd/4 when considering the restriction of N ≥
√
n. Thus,

putting it all together, we have:

rd(n) = nd/2−1
∞∑
q=1

Aq(n)
πd/2

Γ(d/2)
+O(nd/4)

= S
πd/2

Γ(d/2)
nd/2−1 +O(nd/4)

2.5 Conclusion

To see the final result, simply observe that (as has mentioned in the proof several times), this value has a

defined, finite value for any d ≥ 5, meaning the number of ways a number n can be written as a sum of d

squares is well defined. More formally, the full result is:

∀d ≥ 5, ∃N such that ∀n ≥ N , ∃ at least one representation of n as a sum of d squares.
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3 Two-Squares Lemma Proof

3.1 Introduction

In this section, we explore a largely unrelated topic, that now studies a key lemma used in the proofs of

the two-square and four-square theorems. While there are many ways of presenting this proof, the one

we consider here involves complex analysis and algebra. Throughout this section, we denote the group of

fractional linear transforms by G, which covers all matrices of the form:(
a b

c d

)
Specifically, we only consider those with integer entries, determinant 1, and such that a and d have the

same parity, b and c have the same parity, and c and d have opposite parity. We specifically focus on this

group, as it acts on upper half-plane by fractional linear transformations. To the group G corresponds the

fundamental domain F defined by |τ | ≥ 1, |Re(τ)| ≤ 1, and |Im(τ)| ≥ 0. The overall lemma we wish to

prove, therefore, is:

Theorem 1. Let G denote this group of matrices of fractional linear transformations. A function in H
which is holomorphic, bounded, and invariant under G must be constant.

The proof requires three main lemmas/results, from which we finally reach our conclusion, which we now

turn to.

3.2 Vanishing Function: Upper Half-Plane

We wish to demonstrate the following lemma:

Lemma 1. Suppose that f : H → C is holomorphic, bounded, and that there exists a sequence of complex

numbers τk = xk + iyk such that:

f(τk) = 0,

∞∑
k=1

yk =∞, 0 < yk ≤ 1, |xk| ≤ 1

Then f ≡ 0.

Proof. We further break this proof into three separate further lemmas, which involves mapping the function

to the unit disk (D) and then proving the same result on the transformed function using Jensen’s Formula.

3.2.1 Conformal Map to Unit Disk

To complete this proof, it is much easier to deal with our function f as a transformed function g that maps

from D→ C. Specifically, consider the standard conformal mapping from D→ H of:

G(w) = i

(
1− w
1 + w

)
And further denote g(z) = F ◦G(z). We now demonstrate that the assumption we made regarding f , implies

that g satisfies the following properties:

1. g is holomorphic ∈ D

2. g is bounded

3. g is not identically zero

4. If z1, z2, ..., zn, ..., then
∑∞
n=1(1− |zn|) =∞
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The reason these properties are of importance is for the proof we rely on (in the following subsection).

The first three follow quite straightforwardly. Namely, the first is because g is defined as a composition of

holomorphic functions. Further, g is bounded as f is bounded (i.e. |g(w)| = |F (G(w))| ≤M , for the bound

M of f , since G(w) ∈ H). Similarly, it is not identically zero as we assume f 6≡ 0 (similar argument to

bounding).

The final property is similarly straightforward, although not as much as the previous three. Namely, the

zeros of g are those wk for which G(wk) = τk for some τk (a zero of f). Explicitly, we can find these wk by

considering the reverse conformal mapping, namely that which maps H(z) : D→ H, given by:

H(z) =
i− z
i+ z

All that is of importance, however, is the geometric interpretations of both this and the two sums being

considered. Namely, this transformation is essentially mapping each point in the upper half plane to the

ratio of its distances to the points −i and i respectively. Clearly, as all points ∈ H are closer to i than −i,
this fraction always has magnitude < 1, as desired. As for the two sums,

∑∞
n=1(1 − |zn|) corresponds to

the sum of the distances of the points to the boundary of the unit disk whereas
∑∞
k=1 yk is the sum of the

distances of points to the boundary of the upper half plane, i.e. the real axis.

Since we assume the latter diverges, we are assuming that the distances of the y axis to the real axis is

consistently large over the sum, i.e. it is sufficiently far away from the real axis to ”contribute” to causing

the sum to diverge. This implies the point too is closer to i than −i (as we only consider those points in the

rectangular region of Re(z) ∈ [−1, 1] and Im(z) ∈ (0, 1]. As a result, sufficiently many of the points in the

former sum are far from the unit disk boundary, causing this sum to similarly diverge, as desired.

3.2.2 Vanishing Function: Unit Disk (Special Case)

Lemma 2. Prove that if f is holomorphic ∈ D, bounded and not identically zero, and z1, z2, ..., zn, ... are its

zeros (|zk| < 1), then

∞∑
n=1

(1− |zn|) <∞

Consider for some R < 1 the disk DR(0). Since this region is closed (by definition of the closure) and

also bounded (|z| ≤ R), this forms a compact region. Thus, any infinite sequence of {zk}∞k=1 must have

a convergent subsequence. As a result, if it were the case that there were infinitely many zeros ∈ DR(0),

there would be a limit point of f in this closed region, which would imply that f ≡ 0, contradicting our

assumption. Thus, we must have that there are only finitely many zeros ∈ DR(0). In turn, we may number

these zeros in an arbitrary order, with denotation z1, z2, ..., znR
, where nR clearly corresponds to the number

of zeros that occurs in the region DR(0). Since this region clearly converges to D in the limit of R → 1,

nR →∞ as R→ 1.

Thus, the main takeaway from the above was that the number of zeros is finite in the interior of a closed

subset of D, thus allowing us to apply Jensen’s Formula. For simplicity, we assume that f(0) 6= 0. If it

were the case that f(0) = 0, that would imply we could factor f as zng(z), where g(0) 6= 0 and similarly

proceed through the proof, now considering g. Further, we denote the bound for f as M , namely that

|f(z)| ≤M∀z ∈ D (as we assumed f is bounded). Specifically, in this closed subset, we can consider:

N∑
k=1

log(
R

|zk|
) =

1

2π

∫ 2π

0

log |f(Reiθ)|dθ − log |f(0)| (6)

Since log is monotonically increasing, it is bounded above by the log of the maximum argument. Namely:
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1

2π

∫ 2π

0

log |f(Reiθ)|dθ − log |f(0)| ≤ 1

2π

∫ 2π

0

log |M |dθ − log |f(0)| (7)

= log |M | 1

2π

∫ 2π

0

dθ − log |f(0)| = log

∣∣∣∣ M

|f(0)|

∣∣∣∣ (8)

We now apply the bound that 1 − x ≤ − log(x) for x ∈ (0, 1). Specifically, since |zk| < R, we have that
|zk|
R ∈ (0, 1), which we use to conclude:

nR∑
n=1

(
1− |zk|

R

)
≤

nR∑
n=1

− log

(
|zk|
R

)
=

nR∑
n=1

log

(
R

|zk|

)
≤

∣∣∣∣ M

|f(0)|

∣∣∣∣ <∞ (9)

3.2.3 Vanishing Function: Generalization

To apply the above result to our desired lemma, assume for sake of contradiction, that the function f :

H → C 6≡ 0. This would imply that g (as defined previously) is also not identically zero and thus (for its

zeros {zk}∞k=1)
∑∞
n=1(1 − |zn|) < ∞. However, we proved that our assumptions on f implies that g has∑∞

n=1(1− |zn|) =∞, arriving at a contradiction. Thus, f ≡ 0, as desired.

3.3 Fractional Linear Transformations

We now revisit the group G of fractional linear transforms that were initially discussed in the statement of

the lemma. Namely, matrices (
a b

c d

)
with integer entries, determinant 1, and same parity along diagonals but with each diagonal having a different

parity. The group creates a correspondence to transforms by defining (for each g ∈ G) the transformation:

g(τ) =
aτ + b

cτ + d

This group is of particular importance as every fractional linear transformation corresponding to g ∈ G is a

composition of finitely many S, T2 and their inverses, where S and T2 are the following transforms:

S(τ) = −1/τ ↔
(

0 −1

1 0

)

T2(τ) = τ + 2↔
(

1 2

0 1

)

3.3.1 Existence for Arbitrary Pair

Lemma 3. Given two relatively prime integers c and d with different parity, show that there exist integers

a and b such that

(
a b

c d

)
∈ G.

Proof. Since we assume that (c, d) = 1, it follows that these two integers span the ring of integers over linear

combinations. That is, we can find constants c1, c2 such that c1c + c2d = n for any choice of n. Thus, we

can find constants a0, b0 such that:

det(g) = a0d− b0c = 1 (10)
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If WLOG we assume c to be even and d odd, we would wish for a to be odd and b even. This choice of a0, b0
may, however, not abide by the desired properties of parity. However, since infinitely many pairs of a0, b0
exist that satisfy the above linear combination, we can find a pair for which a0 has the desired parity (i.e.

odd). However, b0 may be odd too in this pair found. To arrive at our final version, we observe that ∀t ∈ Z,

the values a = a0 − ct and b = b0 − dt also satisfy the equation, as:

(a0 − ct)d− (b0 − dt)c = a0d− dct− b0c+ dct = a0d− b0c = 1 (11)

Since c is even, adding/subtracting ct to a0 will not affect its parity. However, adding/subtracting dt to b0
(for any odd t) will switch its parity, as desired. Thus, setting t = 1 will complete the proof, finding out

desired integers a, b.

3.3.2 Unbounded Sum

We finally prove the result of a sum that will be critical in the final conclusive step of the proof:

Lemma 4.
∑

1
c2+d2 =∞, where the sum is taken over all c and d that are relatively prime and of opposite

parity.

We proceed through contradiction. Namely assume instead that this sum were bounded, namely that:∑
(c,d)=1

c,d opp par

1

c2 + d2
<∞

We demonstrate that this would imply that the sum over all (i.e. not just those with opposite parity and

relatively prime) pairs of integers is bounded, which is a contradiction. In particular, we first demonstrate

that the above assumption implies the sum over all relatively prime numbers (not just those of opposite

parity) is bounded. Clearly:∑
(c,d)=1

1

c2 + d2
=

∑
(a,b)=1

a,b opp par

1

a2 + b2
+

∑
(a,b)=1

a,bboth even

1

a2 + b2
+

∑
(a,b)=1

a,bboth odd

1

a2 + b2

Since we took the first term on the RHS to be bounded by assumption, it suffices to demonstrate the latter

two terms are similarly bounded. Clearly, the cases of both being odd and even are parallel, meaning it

suffices to demonstrate one of the two cases. In particular, we demonstrate the case where both a, b are odd.

In this case, we have for some n,m a = 2n+ 1 and b = 2m+ 1, meaning (assuming a > b):

c =
a+ b

2
, d =

a− b
2

Are relatively prime and opposite parity. To see that these are relatively prime, simply observe that, if they

were not relatively prime, there must be some x ∈ Z that evenly divides both c, d, meaning there exists some

x for which a+b
2x ,

a−b
2x are both integers. This is only possible if, for such an x, a+ b ≡ a− b( mod x). This

could only be the case if b and −b were symmetric about mod x, which could only occur when b = x/2,

implying that x is even. This, however, implies that a, b must have the same parity, which is opposite the

assumption. Thus, c, d are relatively prime.

To see that these are of opposite parity, simply observe:

a+ b = (2n+ 1) + (2m+ 1) = 2(n+m+ 1) =⇒ c = n+m+ 1

a− b = (2n+ 1)− (2m+ 1) = 2(n−m) =⇒ d = n−m

10



Yash Patel Analysis Junior Seminar: Final Paper

Since adding an even number does not change the parity of a number, d has the same parity as d+2m = n+m,

clearly demonstrating that c, d have opposite parities (n+m vs. n+m+ 1). As a result, we have that:

c2 + d2 =

(
a+ b

2

)2

+

(
a− b

2

)2

= 1/4(a2 + 2ab+ b2 + a2 − 2ab+ b2) = 1/2(a2 + b2) ≤ a2 + b2 (12)

=⇒
∑

(a,b)=1

a,bboth odd

1

a2 + b2
≤

∑
(c,d)=1

c,d opp par

1

c2 + d2
<∞

This demonstrate that each of the sum over all relatively prime integers is bounded (as the above process

can be repeated for relatively prime even pairs). Further, it also shows that ∀n ∈ Z, c2 + d2 ≤ n2(a2 + b2),

implying that:

∞∑
n=1

1

n2

∑
(a,b)=1

1

a2 + b2
=

∞∑
n=1

∑
(a,b)=1

1

(na)2 + (nb)2
≤

∑
(c,d)=1

c,d opp par

1

c2 + d2
<∞

Since (a, b) = 1, when multiplied over all integers n, we span over all integers (by a similar argument as how

relatively prime integers span the ring of integers used in the singular integrals proof). Thus, this implies:∑
`,k 6=0

1

`2 + k2
<∞

Reaching a contradiction, as this last sum is known to diverge.

3.3.3 Conclusion

Finally, we wish to show the original result. Namely, consider any function F (τ) that satisfies the original

properties of the lemma. We now linearly shift the function and define f(τ) = F (τ) − F (i), which clearly

vanishes at τ = i by definition. We now consider any pair of relatively prime integers c, d with different

parity. By Lemma 3, we have a corresponding ∃gc,d ∈ G. By definition:

gc,d(i) =
b+ ai

d+ ci
· d− ci
d− ci

=
bd− bci+ adi+ ac

c2 + d2
=
ac+ bd

c2 + d2
+ i

ad− bc
c2 + d2

Since the determinant of these matrices is 1 by assumption, the imaginary part is simply 1/(c2+d2). Similarly,

we can simply shift the real part over such that it has a magnitude ≤ 1. Thus, if we denote the real part as

xc,d and imaginary as yc,d, we clearly have that |xc,d| ≤ 1 and |yc,d| ∈ (0, 1]. Further, by Lemma 4, we have

the
∑

(c,d)=1

c,d opp par
yc,d =∞. Finally, since F was assumed to be invariant under transformations in G, so too

must f be invariant, meaning that f(gc,d(i)) = f(i), meaning that f vanishes at all these gc,d(i). As it too

is holomorphic and bounded, this implies that f ≡ 0 by Lemma 1, which further implies that F (τ) ≡ F (i),

a constant, completing the proof.
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