
MIS in Light Transport

YASH PATEL
The goal of this project is to implement the techniques we have learned so far to the study of light transport (more information
about what precisely this means in the background section below). The focus in this project will be almost entirely towards
applications, with the vast majority of time and effort expected to be allocated to understanding how to translate theoretical
concepts from class to code in light transport and writing/debugging the corresponding code. The particular element that
will be of focus will be multiple importance sampling. Metropolis MCMC techniques is also provided as a brief theoretical
presentation, but the implementation only includes MIS. All the code for the project is written in C++ and is available at:
https://github.com/yashpatel5400/raytrace-montecarlo
Note: ALL the diagrams and derivations are all from the fantastic resource that is “Physically based rendering: From theory
to implementation." See the references for the full citation.

1 BACKGROUND

1.1 Motivation
Light transport has been one of the crowning achievements from years of development in the subfield of computer
graphics. Computer graphics is specifically the field involved with making computers render 3D environments,
with the main use cases being the rendering in CGI in movies, animated movies, and video games. In fact, any
company heavily involved within this space will have their own, in-house “renderer" that does precisely this, with
the most well known being Pixar’s Renderman software. Computer graphics has gotten so incredibly realistic
that it is oftentimes very hard to even know something that was ONLY ever generated on a computer and did
not actually come from recording.

Fig. 1. Computer graphics rendering is capable of producing absolutely stunning scenes, such as the one generated here.
Realize that NOTHING in the above picture came from the “real world": this is ALL be generated in a computer!
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1.2 Ray Tracing Setup
Scenes consist of four components: geometry, materials, lights, and a virtual camera. Scene geometry are the
“objects in the scene," which could include any number of things, from tables to animals to imaginary creatures. In
implementation, scene elements are defined as combination of geometric primitives, usually taken to be triangles,
spheres, prisms, and the like. Naturally, in the real world, objects don’t just differ by their structure: they also
differ by their materials. Different materials interact with light in different ways: that is, they differ in how
they reflect and transmit light. This is discussed in far greater mathematical detail later. In fact, most of the
complication of sampling in rendering comes from these very interactions between light and object materials.

Another key component of scenes are the sources of light. There are a number of forms of light sources, such
as directional spotlights, global sunlight, or point light sources, but these are not of great importance here. The
final component of a scene is a virtual camera. This represents the point of view we wish to render the scene
from. In other words, we wish to produce a picture corresponding to “how the scene would look if viewed from
some point of view of interest." These components are well illustrated in the following figure:

Fig. 2. This is the basic set of elements when rendering: geometry in the scene (the table and mug here), corresponding
materials for those objects (not shown), light sources (the sun), and a desired camera POV (the eye)

Of course, now the question becomes how do we render this scene from that camera POV, which is where
the technical intrigue comes in. In the “real world," light rays originate from some sources (typically the sun or
lightbulbs) and bounce around your environment until they finally make it to your eye, at which point your
brain interprets the raw signals to produce what you call “vision." A very natural starting point would be to
simulate this precise process in your computer, with your brain being swapped out with a computer program. In
other words, an initial approach can be imagined as following the rays of light from the light sources as they
bounce off of the elements of the scene until they reach the camera position. The main issue with this naive
approach is that almost all of the rays of light would never hit the camera! This makes the naive approach
totally computationally infeasible to use.

So instead, we actually turn the situation around and shoot rays out of the camera! That is, for each pixel in
the final render, we shoot out rays from that position that correspond to the light rays that would have ended
up hitting that pixel (see https://www.youtube.com/watch?v=frLwRLS_ZR0 for a great visualization of this).
Here is where the main complication comes from: there are infinitely many rays that actually hit that

particular pixel on the camera (or your eye for that matter)! If you follow the ray from your eye to the first
object in that direction (consider the table in the above figure), you’ll realize that that ray could have come from
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infinitely many different initial rays, since light bounces off of that table in a way dictated by the material of
that table. With that basic setup, we now dive into the mathematical formalism. There are two pieces of the
mathematical formalism:
(1) Material BRDFs/BSDFs: This describes the local interaction of how a single light ray interacts proba-

bilistically with a material. Importance sampling over this distribution is a very common strategy
(2) Global path integration: This is the global formalization of how we combine paths together to produce

average results of a single point. Notice that we can do sampling over the space of paths directly, which is
where Metropolis sampling is typically used

1.3 Material BRDFs
When light hits an object, it actually scatters in all directions off of that surface, with a probability distribution
defined by the properties of that surface. These probability distributions are referred to as BRDFs (bidirectional
reflectance distribution functions). In general, we are interested in looking at the distribution of outgoing rays of
light 𝜔𝑜 ∈ R3 for particular choices of incoming rays of light 𝜔𝑖 , shown in the figure below:

Fig. 3. For a surface, we are interested in looking at the BRDF to describe the distribution over 𝜔𝑜 for fixed 𝜔𝑖

In general, a BRDF can be expressed as:

𝑓𝑟 (𝜔𝑖 , 𝜔 𝑓 ) =
𝑑𝐿𝑟 (𝜔𝑟 )
𝑑𝐸𝑟 (𝜔𝑟 )

=
𝑑𝐿𝑟 (𝜔𝑟 )

𝐿𝑖 (𝜔𝑖 )𝑐𝑜𝑠 (\𝑖 )𝑑𝜔𝑖

Where 𝐿, 𝐸 are the radiance and irradiance of a material. The radiance is how much light is emitted by a
surface per unit surface area and irradiance simply how much is received per unit surface area. One key detail to
keep in mind is what precise space 𝜔 lives in. The answer is that 𝜔 ∈ 𝑆2, which is the space of angles that span
the unit sphere. 𝜔 is measured in steradians: this is the extension of the concept of how radians are defined for
lengths over the unit circle to surface areas over the unit sphere. Therefore, 𝑓𝑟 maps 𝑆2 × 𝑆2 → R.
The question now becomes how are such BRDFs obtained? That is, what specific property of materials

causes their interactions with light to differ so much? The answer comes from investigating their microscopic
structure. While a surface may feel smooth running your hand along it, the surface is littered with what are
calledmicrofacets, which are simply the microscopic bumps on the material surface. These microfacets are
what result in the macroscopic interactions such objects have with light. Therefore, BRDF functions are actually
produced by modelling these microfacets. This construction of microfacet models is actually itself a rather intricate
subfield that we limit consideration of in this study. Using a particular microfacet model known Torrance-Sparrow
gives us a BRDF of the following form:

𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 ) =
𝐷 (𝜔ℎ)𝐺 (𝜔𝑜 , 𝜔𝑖 ) (1 − 𝐹𝑟 (𝜔𝑜 ))
((𝜔𝑜 · 𝜔ℎ) + [ (𝜔𝑖 · 𝜔ℎ))2

|𝜔𝑖 · 𝜔ℎ | |𝜔𝑜 · 𝜔ℎ |
𝑐𝑜𝑠 (\𝑜 )𝑐𝑜𝑠 (\𝑖 )

Where 𝐹𝑟 (𝜔) is the proportion of light that is reflected and 𝐷,𝐺 are themselves (rather involved) functions of
𝜔 . For brevity, I only show the form of 𝐷 (𝜔ℎ):
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𝐷 (𝜔ℎ) =
𝑒−𝑡𝑎𝑛 (\ℎ)/𝛼

2

𝜋𝛼2𝑐𝑜𝑠4 (\ℎ)
Where 𝛼 is a parameter that characterizes a particular material (meaning brick would have some particular

value of 𝛼 and plastic another). Notice that this is conceptually (and mathematically) where importance sampling
greatly improves convergence of the computation of integrals: much of rays that contribute to the final color of
an object comes from some subset of the space of incoming rays, meaning it is best to concentrate samples from
that region. For examples of how some basic materials differ in BRDF structure, see the below figure

Fig. 4. Here we see the difference between three very commonmaterial types: the left one is a diffuse material (such as wood),
which scatters light equally in all directions; the middle a metallic surface (such as steel or iron), which has a directional
preference, but still has some degree of scattering; and the right a mirror that purely reflects light in some direction

1.4 Material BTDFs
Notice we have totally neglected a large feature of light in our discussions thus far! Whenever light interacts
with any not-opaque material, it is partially transmitted through the material, with the light rays bending
in accordance to the index of refraction of the material. Therefore, to model this phenomenon, we have a
very similar expression known as the BTDF (bidirectional transmittance distribution function). Once again, in
particular cases, this function can have very complicated forms, but the general form is as follows:

𝑓𝑡 (𝜔𝑖 , 𝜔𝑜 ) =
[2
𝑜

[2
𝑖

(1 − 𝐹𝑟 (𝜔𝑖 ))
𝛿 (𝜔𝑖 −𝑇 (𝜔𝑜 , 𝑛))

| cos(\𝑖 ) |
Where𝑇 is a transmission vector and 𝐹𝑟 (𝜔) is once again the proportion of light reflected, meaning 1 − 𝐹𝑟 (𝜔𝑖 )

is that transmitted. The sum interactions of light ray at the surface of an object can be described as:

𝑓 (𝜔𝑖 , 𝜔𝑜 ) = 𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 ) + 𝑓𝑡 (𝜔𝑖 , 𝜔𝑜 )
This is often referred to as the BSDF (bidirectional scattering distribution function). In probability parlance,

this defines a joint probability distribution over (𝜔𝑖 , 𝜔𝑜 ) ∈ 𝑆2 × 𝑆2.

1.5 Light Transport Equation
We now return to the overall question of light transport, which we recall involves capturing the contributions of
the infinitely many rays that bounced to hit the point of interest. The key mathematical formalism is to express
this problem as an infinite dimensional path integral problem. Since this is of central importance to the problem,
we provide a brief derivation of this central equation. Start with a particular ray of light, which we denote by
(𝑝,𝜔), 𝑝 being the endpoint and 𝜔 being the direction. The power transmitted by light in a system must be
conserved. Therefore, the outbound light from a particular point must be the sum total of any that surface is
itself producing and what it is reflecting. Mathematically (remember 𝐿 is the radiance or emitted light):

𝐿𝑜 (𝑝,𝜔𝑜 ) = 𝐿𝑒 (𝑝,𝜔𝑒 ) +
∫
𝑆2

𝑓 (𝑝,𝜔𝑖 , 𝜔𝑜 )𝐿𝑖 (𝑝,𝜔𝑖 ) |𝑐𝑜𝑠 (\𝑖 ) |𝑑𝜔𝑖 (1)
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Where 𝑆2 is the surface integral over the point we are considering and 𝑓 (𝑟, 𝜔𝑖 , 𝜔𝑜 ) is the distribution of rays
coming to said surface (which relates back to the BRDF/BTDF discussion we had before). This formulation may
give a false sense of simplicity! There is no analytic or close to straightforward way of calculating this. This
is because we have simply hidden the dependence of the scene geometry in the 𝐿𝑖 (𝑝,𝜔𝑖 ) function, which will
become more clear as we expand this expression.

We now rewrite 𝐿𝑖 in a way that shows this explicitly and also parallels how the implementation works. Notice
that this inbound 𝐿𝑖 must have come from some other point in the scene, by conservation of energy. That is,
there must have been some other point 𝑝 ′ whose outbound radiance is precisely what is measured at 𝐿𝑖 (𝑝). In
other words, 𝐿𝑜 (𝑝 ′, 𝜔) = 𝐿𝑖 (𝑝,𝜔 ′). We now introduce a “ray-tracing" function 𝑡 (𝑝,𝜔) that returns the first point
of scene geometry that is intersected starting from 𝑝 and tracing the direction 𝜔 , shown below:

Fig. 5. Formulating the equations with 𝐿𝑖 totally obscures the relation to where such relevant rays are coming from! By
introducing 𝐿𝑜 , we make the dependence much more clear and explicit and have the additional benefit of it directly pertaining
to the eventual implementation

Therefore, we rewrite this original formulation as:

𝐿𝑜 (𝑝,𝜔𝑜 ) = 𝐿𝑒 (𝑝,𝜔𝑒 ) +
∫
𝑆2

𝑓 (𝑝,𝜔𝑖 , 𝜔𝑜 )𝐿𝑜 (𝑡 (𝑝,𝜔𝑖 ),−𝜔𝑖 ) |𝑐𝑜𝑠 (\𝑖 ) |𝑑𝜔𝑖

We now expand this out to obtain the path integral formulation. We introduce a bit of new notation: instead of
considering a solid angle 𝜔 , we now consider a fixed path 𝑝 ′ → 𝑝 , which has direct correspondence to the solid
angle formulation (simply by following that corresponding solid angle “out" to reach the other point 𝑝 ′). In other
words, we can now denote 𝐿𝑜 (𝑝,𝜔𝑖 ) as 𝐿𝑜 (𝑝 ′ → 𝑝). Notice that we can similarly notate the BSDF interaction
that initially produced such a 𝑝 ′ as 𝑓 (𝑝 ′, 𝜔𝑖 , 𝜔𝑜 ) = 𝑓 (𝑝 ′′ → 𝑝 ′ → 𝑝), as depicted in the below diagram:

Fig. 6. Here we have an illustration of the origin of the rewrite 𝑓 (𝑝 ′, 𝜔𝑖 , 𝜔𝑜 ) = 𝑓 (𝑝 ′′ → 𝑝 ′ → 𝑝)

From here, it is common to bundle the visibility of the scene geometry into a function𝑉 (𝑝 ′′, 𝑝 ′) and the factors
related to the change of variable from solid angle to area into a single “geometric" factor 𝐺 (𝑝 ′′ ↔ 𝑝 ′):
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𝐺 (𝑝 ′′ ↔ 𝑝 ′) = 𝑉 (𝑝 ′′ ↔ 𝑝 ′) |𝑐𝑜𝑠 (\ ) | |𝑐𝑜𝑠 (\
′) |

| |𝑝 − 𝑝 ′ | |2

With these notations introduced, we are left with:

𝐿(𝑝 ′ → 𝑝) = 𝐿𝑒 (𝑝 ′ → 𝑝) +
∫
A
𝑓 (𝑝 ′′ → 𝑝 ′ → 𝑝)𝐿(𝑝 ′′ ↔ 𝑝 ′)𝐺 (𝑝 ′′ ↔ 𝑝 ′)𝑑𝐴(𝑝 ′′)

Notice that this final term is recursively related to the original formulation! So, we can expand this ad
infinitum. Specifically, we can see that this can be written as:

𝐿(𝑝1 → 𝑝) = 𝐿𝑒 (𝑝1 → 𝑝) +
∫
A
𝑓 (𝑝2 → 𝑝1 → 𝑝)𝐺 (𝑝2 ↔ 𝑝1)𝐿(𝑝2 ↔ 𝑝1)𝑑𝐴(𝑝2)

= 𝐿𝑒 (𝑝1 → 𝑝) +
∫
A
𝑓 (𝑝2 → 𝑝1 → 𝑝)𝐺 (𝑝2 ↔ 𝑝1)

(
𝐿𝑒 (𝑝2 → 𝑝1) +

∫
A
𝑓 (𝑝3 → 𝑝2 → 𝑝1)𝐺 (𝑝3 ↔ 𝑝2)𝐿(𝑝3 ↔ 𝑝2)𝑑𝐴(𝑝3)

)
𝑑𝐴(𝑝2)

= 𝐿𝑒 (𝑝1 → 𝑝) +
∫
A
𝐿𝑒 (𝑝2 → 𝑝1) 𝑓 (𝑝2 → 𝑝1 → 𝑝)𝐺 (𝑝2 ↔ 𝑝1)𝑑𝐴(𝑝2)+∫

A

∫
A
𝑓 (𝑝3 → 𝑝2 → 𝑝1) 𝑓 (𝑝2 → 𝑝1 → 𝑝)𝐺 (𝑝3 ↔ 𝑝2)𝐺 (𝑝2 ↔ 𝑝1)𝐿(𝑝3 ↔ 𝑝2)𝑑𝐴(𝑝3))𝑑𝐴(𝑝2)

Now clearly, this process NEVER stops! That is to say, we have an infinite number of path integrals that
need to be solved in the actual case of true physical simulation of what light is doing. Another thing to notice is
how to semantically interpret each of these separate integrals: these correspond to paths of increasing length,
with the first being a path consisting of a single bounce, the next with two bounces, and so on ad infinitum. In
other words, we can take a sum over all possible path lengths (where the 𝑛th term in this sum is exactly the 𝑛th
term in the above expansion):

𝐿(𝑝1 → 𝑝) =
∞∑
𝑛=1

𝑃 (𝑝𝑛)

Now, referring to the above, we see that the amount a light path of length 𝑛 actually contributes is dependent
on all the BSDFs of the material hit along the path. In other words, we can define an overall throughput of said
path as:

𝑇 (𝑝𝑛) =
𝑛−1∏
𝑖=1

𝑓 (𝑝𝑖+2 → 𝑝𝑖+1 → 𝑝𝑖 )𝐺 (𝑝𝑖+1 ↔ 𝑝𝑖 )

Meaning each of these paths can be defined as:

𝑃 (𝑝𝑛) =
∫
A

∫
A
...

∫
A
𝐿𝑒 (𝑝𝑛 → 𝑝𝑛−1)𝑇 (𝑝𝑛)𝑑𝐴(𝑝2)...𝑑𝐴(𝑝𝑛−1)𝑑𝐴(𝑝𝑛)

This is the final equation we wish to consider in calculating 𝐿(𝑝1 → 𝑝), which leads us posing the question of
how to calculate this seemingly intractable integral. Unsurprisingly, we turn to Monte Carlo for this.
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1.6 Monte Carlo Path Tracing
The natural question is how can we possibly calculate the behemoth that is:

𝐿(𝑝1 → 𝑝) =
∞∑
𝑛=1

𝑃 (𝑝𝑛)

It suffices to determine how to estimate 𝑃 (𝑝𝑛) for any choice 𝑛, since then we can just add these up (curtailing
the sum at some large, finite value). A very naive way of doing so might be to uniformly at random 𝑛 pieces of
geometry from the scene and construct a path between such things in hopes of getting a Monte Carlo estimate of
𝑃 (𝑝𝑛). However, this is totally hopeless. First off, most realistic scenes have counts of geometry in the hundreds
of billions and sometimes trillions, making the choosing of light paths at random totally unusable, since almost
all light paths will lack end-to-end visibility, which will render the contribution of such a path to 0. The repetitive
bouncing of rays also concentrates the angle of the relevant paths, which makes any uniform sampling strategy
necessarily high variance. Note that there are very apparent visual ramifications of choosing a sampling method
with high variance, shown in the below figure:

Fig. 7. An example of a render using a strategy that has high variance is shown on the left, where there are many speckles.
In computer graphics parlance, these are referred to as “fireflies." These represent points where the estimator has not yet
converged to any meaningful answer and is typically only resolved with a significantly increased computation time

What we do instead is incremental sampling. That is, we construct the path starting by performing a sampling
of the first BSDF we encounter, then following that ray out to the next encountered object, sample its BSDF, and
so on 𝑛 times to sample a ray of length 𝑛. Remember that the goal is to estimate the integral:

𝑃 (𝑝𝑛) =
∫
A

∫
A
...

∫
A
𝐿𝑒 (𝑝𝑛 → 𝑝𝑛−1)𝑇 (𝑝𝑛)𝑑𝐴(𝑝2)...𝑑𝐴(𝑝𝑛−1)𝑑𝐴(𝑝𝑛)

Recall that importance sampling weighting simply involves (for a single variable):∫
𝑓 (𝑥)𝑑𝑥 =

∫
𝑓 (𝑥)
ℎ(𝑥) ℎ(𝑥)𝑑𝑥

In other words, we need to reweight our sampled light ray by the reciprocal of the sampling probability. First
observe that, in order to do sampling in the space of 𝑆2, which is more convenient in practice, it is necessary to
reformulate the previous result back into solid angles. Relating the probabilities gives us:
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𝑝𝐴 (𝑝𝑖 ) = 𝑝𝜔 (𝑝𝑖+1 − 𝑝𝑖 )
|𝑐𝑜𝑠 (\𝑖 ) |

| |𝑝𝑖+1 − 𝑝𝑖 | |2
This comes from the fact that there is a direct geometric relationship between differential solid angles and the

corresponding angles, given by the equation below and corresponding figure:

𝑑𝜔 =
𝑑𝐴𝑐𝑜𝑠 (\ )

𝑟 2

Fig. 8. The solid angle is clearly directly relatable to the differential vector, as given by the standard transformation to
spherical coordinates given here

Notice that the “geometric factor" defined has cancellation with this Monte Carlo weighting term:

𝑓 (𝑝𝑖+2 → 𝑝𝑖+1 → 𝑝𝑖 )𝐺 (𝑝𝑖+1 ↔ 𝑝𝑖 )
𝑝𝜔 (𝑝𝑖+2 − 𝑝𝑖+1) |𝑐𝑜𝑠 (\𝑖 ) |

| |𝑝𝑖+1−𝑝𝑖 | |2
=

𝑓 (𝑝𝑖+2 → 𝑝𝑖+1 → 𝑝𝑖 )𝑉 (𝑝𝑖+1 ↔ 𝑝𝑖 ) |𝑐𝑜𝑠 (\𝑖 ) | |𝑐𝑜𝑠 (\𝑖+1) |
| |𝑝𝑖−𝑝𝑖+1 | |2

𝑝𝜔 (𝑝𝑖+2 − 𝑝𝑖+1) |𝑐𝑜𝑠 (\𝑖 ) |
| |𝑝𝑖+1−𝑝𝑖 | |2

=

𝑓 (𝑝𝑖+2 → 𝑝𝑖+1 → 𝑝𝑖 )𝑉 (𝑝𝑖+1 ↔ 𝑝𝑖 ) |𝑐𝑜𝑠 (\𝑖+1) |
𝑝𝜔 (𝑝𝑖+2 − 𝑝𝑖+1)

We can additionally simplify this by observing that the only samples that are considered in the final evaluation
are those that have end-to-end visibility, meaning that all such samples must have 𝑉 (𝑝𝑖+1 ↔ 𝑝𝑖 ) = 1. Removing
this term results in the final simplified expression for the weighting of each bounce in the integrand:

𝑓 (𝑝𝑖+2 → 𝑝𝑖+1 → 𝑝𝑖 ) |𝑐𝑜𝑠 (\𝑖+1) |
𝑝𝜔 (𝑝𝑖+2 − 𝑝𝑖+1)

Combining this with the actual function of interest, therefore, gives us the almost final importance weighted
Monte Carlo samples we will collect:

𝐿𝑒 (𝑝𝑛 → 𝑝𝑛−1)
(
𝑛−1∏
𝑖=1

𝑓 (𝑝𝑖+2 → 𝑝𝑖+1 → 𝑝𝑖 ) |𝑐𝑜𝑠 (\𝑖+1) |
𝑝𝜔 (𝑝𝑖+2 − 𝑝𝑖+1)

)
(2)

This equation above is not necessarily the actual final form is that, in sampling, sometimes we want the final
bounce to be sampled over a distribution of the light sources. In other words, we take 𝑛 − 1 bounces randomly
through the scene (sampled based on the BSDFs) and sample the last over the distribution of light sources, since
there is an implicit assumption that this ray of light must have originated from some light source in our scene.
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That is, we assume the ray did not simply appear out of the ether, meaning the last bounce must connect it to the
source. Because of this, the geometry factor in this bounce does not cancel out as it does in the others. Denoting
the distribution over light sources as 𝑝𝐴 (𝑝𝑖 ), we get the final expression by pulling out the 𝑛 − 1st term from the
product and reciprocal weighting it by 𝑝𝐴 (𝑝𝑖 ) instead:

𝐿𝑒 (𝑝𝑛 → 𝑝𝑛−1) 𝑓 (𝑝𝑛+1 → 𝑝𝑛 → 𝑝𝑛−1)𝐺 (𝑝𝑛 ↔ 𝑝𝑛−1)
𝑝𝐴 (𝑝𝑖 )

(
𝑛−2∏
𝑖=1

𝑓 (𝑝𝑖+1 → 𝑝𝑖 → 𝑝𝑖−1) |𝑐𝑜𝑠 (\𝑖 ) |
𝑝𝜔 (𝑝𝑖+1 − 𝑝𝑖 )

)
1.7 Bidirectional Ray Tracing
There is just one more piece of background before we can discuss Metropolis Light Transport: bidirectional
ray tracing. Notice that, in the setup discussed so far, all the paths that have no visibility along the final bounce
to the light source are discarded in the sampling. This means a scene where the main light source of the scene is
occluded from the geometry would be nearly impossible to render with our current sampling strategy, since
almost all the rays will end up hitting said occlusion, as shown below

Fig. 9. Case where the light source is occluded from most of rays as they bounce around the scene, which would result in
poor convergence rates for naive, unidirectional ray tracing. Bidirectional ray tracing shines in this case

While this seems like a totally contrived example, it actually shows up very often in (animated) movies! Think
about where there is a scene that has the characters in a room that is illuminated primarily by a light in an
adjacent room. For this reason, we extend the framework of ray tracing as follows. One key observation is
that the rendering equation is totally decomposable. That is, instead of viewing all the rays as ending up on
the light sources, we can shoot rays out of the light source, bounce that around the scene according to the
BSDFs, and then have that bounced ray be our light source! In other words, we would construct a sequence
𝑝0, 𝑝1, ..., 𝑝𝑡 , 𝑞𝑡 , 𝑞𝑡−1, ...𝑞0, where the {𝑝𝑖 } trace away from the camera as we have been considering so far and
the {𝑞𝑖 } trace away from the light source! By doing the ray tracing partially from the light sources, we reduce
the number of samples that need to be rejected due to occlusions and hence reduce the variance of the estimator.

Fig. 10. Here are different ways of tracing the same scene. Notice that bidirectional ray tracing imposes no constraint on
how much of the total path is contributed by the light source trace vs. the camera trace, meaning we can choose any subset
of the path length 𝑛 to be our camera source length.
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Notice that the sample weighting follows a very similar scheme to that derived in the previous section for
forward rendering. For this reason, we do not derive it explicitly here, although the slight changes (for the initial
light ray projecting distribution for instance) need to be accounted for in the weighting.

1.8 Metropolis Light Transport
This leads us to what has become one of the crowning jewels in computer graphics: Metropolis Light Transport.
There are many incarnations of MLT, some of which are far too complex to consider in this setting. We only
consider the simplest of these: Primary Sample Space MLT (PSSMLT). To motivate the formulation of this
technique, suppose we have the difficult-to-render scene discussed above, where the primary light source for the
scene is largely occluded. In that case, suppose we are using the uncorrelated sampling method proposed in a
bidirectional ray tracer. In this case, if we happen to get lucky and finally do find a ray through sampling, the
very next ray is once again randomly sampled! In other words, we are starting to search for rays as if we have
no knowledge of what a successful light path looks like. This is extremely computationally wasteful! PSSMLT
is a step in the direction of alleviating that issue. As a subpoint, notice that PSSMLT is not a general purpose
replacement for bidirectional tracing! It only has advantages in scenes where the light source is largely occluded
or coming from a narrow sampling band.

As brief preface to posing the MLT formulation, we must reformulate the sampling procedure. Realize that, by
default, sampling is happening over the space of paths. However, this space is totally non-Euclidean: we can
only sample 2D subsets of R3 that correspond to object surfaces, which clearly does not resemble a Euclidean
space. We need to figure out a way to convert this to a Euclidean domain to proceed through the sampling. We
can rethink the sampling path 𝑝0 → 𝑝1 → ... → 𝑝𝑛 ... (→ ∞) as actually a draw from an infinite distribution
𝑋1, 𝑋2, ..., 𝑋𝑛, ..., where each 𝑋𝑖 ∈ [0, 1]. One key implementation detail that makes this possible is that material
surfaces are always parameterized as normalized coordinates system [0, 1]2 (referred to as 𝑢, 𝑣 coordinates in
computer graphics parlance). This means that a path can be modelled as a sampling from [0, 1]∞, as shown below:

Fig. 11. There is a direct equivalence between the Euclidean domain of the infinite dimensional hypercube and the non-
Eucliean path domain, with the former lending itself well to MLT.

The idea withMLT, therefore, is to sample this space as wewould typically with bidirectional ray tracing initially.
However, for subsequent samples, we have two “mutations" that we can introduce. The first is a “large mutation"
that is used to escape islands in probability space. This consists of totally replacing the current components
of {𝑋𝑖 } and resampling from scratch using bidirectional ray tracing. In other words, “large mutations" are no
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different than a standard sampling run for a bidirectional ray tracer. The other is just to make a “small mutation,"
which involves moving the {𝑋𝑖 } incrementally in the hypercube space, thereby allowing a local exploration of
the ray space.
Therefore, the final version of PSSMLT consists of a bidirectional ray tracer (itself using MIS for sampling

bounces through the BSDFs in the scene) and doing incremental adjustments on those rays in the hypercube
sampling space to occasionally allow correlated samples for local light exploration.

2 IMPLEMENTATION
With that background in place, we turn to what was actually implemented for the project. As mentioned in the
abstract, all the code for the project was written in C++. As with most examples in engineering, there is often a
disparity between the mathematical formulation in theory and that employed in practice, with the transformation
between the two oftentimes being totally non-obvious. Such is certainly the case here, and we therefore present
the concrete steps that were taken to implement this project along with code snippets. The results from this
development are presented in the next section.

2.1 Ray Generation
As mentioned in the background section, the generation of rays from the camera is the basic operation necessary
to perform ray tracing, with the other basical components being intersection logic for fundamental geometry and
scattering for the corresponding object material. Generating rays involves projecting out from a virtual camera.
All cameras, in their simplest forms, can be imagined as being pinhole cameras, which have an infinitely small
hole through which light passes and an image plane onto which such rays accumulate. In real cameras, such
an image plane is precisely determined by where the CCD sensor is located. Of course, in real cameras, there
are a number of other components, most notably the lens, which itself adds distortion and a number of other
geometric complications. Luckily for us, when doing rendering in software, we can simply imagine the idealized
case and totally ignore the realistic necessity of camera lenses.

Fig. 12. The pinhole camera is an idealization of how cameras project 3D geometry from the real world to the plane of the
camera onto which pictures are “taken." This, however, serves as the basis for virtualized cameras.

In the case of virtual cameras, we have to take this and do the opposite, meaning we generate rays by doing
precisely the opposite of the projection of these incoming light rays. Simply looking at the above figure, we see
there are two similar triangles that define the projection onto a cameras as:

𝑥 ′ =
𝑓 𝑥

𝑧
,𝑦 ′ =

𝑓 𝑦

𝑧
Where 𝑓 is the focal length, (𝑥,𝑦, 𝑧) is the 3D position of a point, and (𝑥 ′, 𝑦 ′) is the 2D image projection. Here,

we have to construct the ray starting from a position (𝑥 ′, 𝑦 ′). For technical reasons dealing with camera geometry,
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the pixels on the image do not precisely line up with those on the CCD, so rays are generated as a ratio of these.
For an image that is 𝐼𝑚𝑤 × 𝐼𝑚ℎ , CCD of size 𝐶𝐶𝐷𝑤 ×𝐶𝐶𝐷ℎ , and each pixel (𝑖, 𝑗):

−→𝑟 = 𝑟𝑎𝑦 (0, (𝐶𝐶𝐷𝑤

𝐼𝑚𝑤

𝑖,
𝐶𝐶𝐷ℎ

𝐼𝑚ℎ

𝑗, 𝑓 ))

Where we are using the notation that will be employed for the remainder of this discussion that −→𝑟 = (𝑜, 𝑑), 𝑜 ∈
R3, 𝑑 ∈ R3, | |𝑑 | | = 1, where 𝑜 is the ray origin and 𝑑 is the ray direction. From here, we can project into the scene
and check for geometry intersection, from which all the sampling that is of interest arises.

2.2 Scene Geometry
There are two types of geometry included in this ray tracer: spheres and planes. Keep in mind there are two
stages in ray tracing (that, as mentioned previously, happen theoretically for path lengths of indefinite size): ray
intersection with scene geometry and scattering. The former is only dependent on where things are located
in the scene whereas the latter depends also on the material of said objects, which we present in the following
section.

2.2.1 Geometry: Sphere. Spheres are defined fully by a center and radius: (c, 𝑟 ), with 𝑐 ∈ R3. For checking the
intersection of a generic ray −→𝑟 = (𝑜, 𝑑), simply notice we wish to have 𝑜 + 𝑡𝑑 satisfy | |𝑐 − (𝑜 + 𝑡𝑑) | |2 = 𝑟 2. This is
simply a quadratic:

𝑡2𝑑 · 𝑑 + 2𝑡𝑑 · (𝑜 − 𝑐) + (𝑜 − 𝑐) · (𝑜 − 𝑐) − 𝑟 2 = 0
Meaning the corresponding discriminant is:

(𝑑 · (𝑜 − 𝑐))2 − 4(𝑑 · 𝑑) ((𝑜 − 𝑐) · (𝑜 − 𝑐) − 𝑟 2)
The nature of the discriminant determines whether there is an intersection with the sphere, with a single and

multiple leading being values ≥ 0. We are always interested in finding the first intersection of the ray with a
piece of geometry in the scene, so we take the smallest 𝑡 ≥ 0 that satisfies the equation.

Fig. 13. The discriminant of the sphere solution determines the intersection of a ray with a sphere, from which we have the
point that will serve for scattering.

2.2.2 Geometry: Planes. Intersection with planes is even simpler than with spheres. For an axis aligned plane,
simply take the axis 𝑖 that is fixed with a corresponding value 𝑐 and simply do 𝑡 = (𝑐 −𝑜𝑖 )/𝑑𝑖 , from which 𝑜 + 𝑡 ∗𝑑
clearly gives the intersection point. For finite planes, simply check whether such a point lies within the bounds.
For generic planes, notice that any plane can be imagined as a plane with a rotation about an axis. Further notice
that, instead of adding the complication of doing intersection logic with the rotated plane, we can simply rotate
the rays in the opposite direction! We can then take the typical intersection logic with this inverse rotated ray,
namely:

𝑥 ′ = 𝑥 cos(\ ) − 𝑦 sin(\ ), 𝑦 ′ = 𝑥 sin(\ ) + 𝑦 cos(\ )
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2.3 Material BRDFs
For this ray tracer, three material types were implemented: Lambertian (diffuse), metallic, and dieletric (glass).
Recall that the basic mental image for these materials is illustrated in Figure 4. Here, we present how the scattering
for each one was implemented. Notice that, for any surface, the sampling can be formulated as being a sampling
over the unit sphere aligned with the normal at the point of intersection:

Fig. 14. Scattering in general involves sampling a unit sphere aligned tangent to the point of intersection, with a normal
aligned with the sphere radius

2.3.1 BRDF: Lambertian. Almost any surface can be modelled as a combination of an idealized Lambertian
(diffuse) surface material combined with some metallic (glossy) component. As a result, Lambertian surfaces are
of great importance to understand. Notice a diffuse surface can be mathematically formulated as a surface that
has no preferential direction for scattering from the surface, meaning scattering is done uniformly at random
across all possible outbound directions. Notice that sampling from a unit sphere can be done naively simply by
sampling uniformly in [0, 1]3 and only retaining those points that end up inside the sphere. The more complicated
derivations for sampling explicit PDFs is derived later in the paper when we introduce MIS and its role in ray
tracing.

2.3.2 BRDF: Metallic. In the case of metallic surfaces, most of the light is scattered in a particular direction,
but there is some degree of scattering about that preferred direction. Clearly, this can be imagined as a perfect
reflection with some amount of noise. Reflection for a direction 𝑑 about a normal 𝑛 is simply 𝑑 + 2𝑛(𝑛 · 𝑑), as
illustrated in this diagram:

Fig. 15. Reflection about the normal of a surface is simply 𝑑 + 2𝑛(𝑛 · 𝑑), where 𝑛 is the normal of the surface

The additional “noise" term can be obtained simply by adding in the simple spherical sampling described in
the previous section with some weighting term 𝛼 , as illustrated here:
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Fig. 16. Scattering off of metallic surfaces is pure reflection combined with uniform spherical scattering

2.3.3 BRDF: Dielectric. The case of dielectric modelling is a fair bit more involved than the previous two parts.
Unlike metallic or Lambertian surfaces, glass objects have the additional property that light can travel through
them. This is an additional layer of complication beyond the standard reflection properties described in the
previous two sections. For this reason, we have to take an aside to discuss how the refraction phenomena described
in the background actually come into play in practice. From physics, we know about refraction:

Fig. 17. Refraction is the main secondary phenomenon seen in glass that gives its characteristic look in the presence of light

The equations dictating the bending of light from refraction are:

sin(\ ′) = [/[ ′ sin(\ )
Where the material that corresponds to the “inside" vs. “outside" depends on whether the light is travelling

from outside the object to inside it or through the object to the outside. For air and glass, the [ = 1, [ ′ = 1.5
respectively if travelling from air to glass.

Finally, while glass does have this refraction phenomenon, it also has reflection, meaning the final interaction
is a linear combination of these two effects. The exact ratio is an extremely complicated mess, so most people
use an approximation known as “Schlick’s approximation" in practice. This is:

𝑅(\ ) = 𝑅0 + (1 − 𝑅0) (1 − cos(\ ))5, 𝑅0 =

(
[1 − [2

[1 + [2

)2

Where \ is the angle between 𝑛 and 𝑑 and 𝑅(\ ) the percent of incident light that gets reflected.

2.4 Basic Integration
As we segue to the discussion about importance sampling, recall that the goal is to estimate the intractable
rendering equation:

𝐿𝑜 (𝑝,𝜔𝑜 ) = 𝐿𝑒 (𝑝,𝜔𝑒 ) +
∫
𝑆2

𝑓 (𝑝,𝜔𝑖 , 𝜔𝑜 )𝐿𝑖 (𝑝,𝜔𝑖 ) |𝑐𝑜𝑠 (\𝑖 ) |𝑑𝜔𝑖

Reframing this in terms of concrete variables, we can see that this is actually:

𝑐𝑜𝑙𝑜𝑟 =

∫
𝑠 (𝑑𝑖𝑟 )𝐴(𝑑𝑖𝑟 )𝑐𝑜𝑙𝑜𝑟 (𝑑𝑖𝑟 )𝑑 (𝑑𝑖𝑟 )
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Where we are looking at the color of a particular point in space by integrating all the directions light could
have come from to hit that point and adding the “flux" of color coming from all directions on the local hemisphere
of light weighted by their corresponding probabilities. Note that intractability of this integral still exists despite
the simplified notation, once again because the dependence on scene geometry is buried in 𝑐𝑜𝑙𝑜𝑟 (𝑑𝑖𝑟 ).
Nonetheless, we can use the incremental path building as described in Eqn 2 from the background coupled

with the concrete methods presented in the last couple sections to get an estimate. Notice that, in calculating this
integral, we can turn to importance sampling to estimate it. In particular, we are free to choose the sampling
distribution of 𝑋 , so long as we correspondingly normalize out the value of the integrand by the sampling
distribution PDF. That is, we simply wish to find E𝑋

[
𝑠𝐴𝑐
𝑝

]
, where 𝑋 ∼ 𝑃 is a distribution over the space of

directions, since:

E𝑋

[
𝑠𝐴𝑐

𝑝

]
=

∫
𝑝 (𝑑𝑖𝑟 ) 𝑠 (𝑑𝑖𝑟 )𝐴(𝑑𝑖𝑟 )𝑐 (𝑑𝑖𝑟 )

𝑝 (𝑑𝑖𝑟 ) 𝑑 (𝑑𝑖𝑟 ) =
∫

𝑠 (𝑑𝑖𝑟 )𝐴(𝑑𝑖𝑟 )𝑐 (𝑑𝑖𝑟 )𝑑 (𝑑𝑖𝑟 )

However, notice that if we simply take 𝑋 ∼ 𝑆 , we simply get E𝑋 [𝐴𝑐]! In other words, if we directly sample
with the scattering distribution, we don’t even need to know the value of the PDFs! This makes it a very natural
choice as a base version of a ray tracer, where the algorithm is simply as follows: for each pixel, generate 𝑁 rays,
each traced through the scene following the corresponding material scattering distributions with the color of the
ray being an incremental sum of the objects on the path if the path terminates in a light source, and average
these 𝑁 values to give the final color for that pixel. Light sources do not scatter light and are seen as sinks for the
projected rays (for forward tracing). Note that this means, in the simplest case without importance sampling, we
are sampling all directions equally often, whether they contribute significantly to the final color of the pixel or
not! This is extremely wasteful, largely because much of the base color can be computed by sampling the direction
of the light more often than other directions, with those other directions filling in nuances in the coloring of the
scene.

2.5 Light Importance Sampling
At last, we get to the concrete realization of the importance sampling that is used in ray tracers. As alluded to in
the previous section, it is very inefficient to use the vanilla version of ray tracing. Even though it is guaranteed to
converge in theory, the number of rays required to eliminate blurriness greatly exceeds that it might were we to
sample light rays in a more intelligent fashion. For importance sampling, we specifically focus on the Lambertian
material case, where the scattering (and hence, sampling without MIS) is taken uniformly at random. The issue
with this is that, for such directions, 𝐴(𝑑𝑖𝑟 )𝑐 (𝑑𝑖𝑟 ) may be quite small or may in fact be 0 if the particular path we
attempt to trace turns out to not terminate in a light source! The idea, therefore, is to instead have an biased
possibility for sampling directly from the light source.

Notice, however, we cannot simply change the sampling without explicitly computing the PDF of this sampling
distribution in E𝑋

[
𝑠𝐴𝑐
𝑝

]
! Recall that we can get away with ignoring the explicit calculation of 𝑠, 𝑝 in the base

case only because 𝑠 = 𝑝 , which is not true in general! We must now derive both the sampling and explicit PDF
for this reason for each of the special regions in the scene we wish to sample from explicitly.
The imposed sampling PDF is totally dependent on the geometry on the scene, so we must go through the

details of the contents of the scene now. In our scene, which there are pictures of in the following (Results)
section, there is a single rectangular light, a glass ball, and a Lambertian grey box all within a larger box (feel free
to peek ahead to the results section to actually see what this looks like!). In the computer graphics community,
this is well-known as the “Cornell Box."
For this scene, there are two directions we wish to bias towards in sampling: the light and the glass ball. The

bias towards the light is for the obvious reasons mentioned, where it ensures the path contributes to the final
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sum and also gives greater weight than those paths that undergo several scattering events before making their
ways to the light. The glass ball is for more nuanced reasons: glass introduces a number of rather intricate light
bending patterns known as caustics, which are difficult to reproduce in software by default. For this reason,
preferentially firing rays towards the glass object gives greater opportunity for such patterns to emerge in the
simulation. Therefore, we have three PDFs and sampling techniques to develop: random directions, the light
source, and the glass ball. Notice that, if we do sampling from the light source with probability 𝛼 , from the glass
ball with probability 𝛽 , and randomly with 1 − 𝛼 − 𝛽 , the overall PDF can be described as:

P(𝑑𝑖𝑟 ) = 𝛼P𝑙𝑖𝑔ℎ𝑡 (𝑑𝑖𝑟 ) + 𝛽P𝑏𝑎𝑙𝑙 (𝑑𝑖𝑟 ) + (1 − 𝛼 − 𝛽)P𝑟𝑎𝑛𝑑𝑜𝑚 (𝑑𝑖𝑟 ) (3)
This framework can be extended indefinitely, meaning it can be similarly defined for any choice of constructed

scene with bias placed as so desired by the engineer.

2.5.1 MIS: Random Directions. While we did previously define the distribution of scattering randomly by that
on the sphere, this formulation does not lend itself well to making corresponding derivations of the PDFs for the
light and glass ball. Therefore, rather than using the uniform spherical scattering that was previously introduced,
we switch to a hemispheric scattering for Lambertian surfaces now, since it makes all the geometry for the
derivations of the other PDFs much more tractable. One very interesting subpoint is that this previously used
uniform sampling on the sphere (starting tangent to the sphere) is equivalent to cosine weighted sampling on
the hemisphere (starting from the center of the sphere corresponding to the hemisphere)! For this reason, we
derive the corresponding sampling procedure for the cosine-weighted directions PDF

We derive this explicitly due to its importance for our use case. Note that we wish to have P[𝑑𝑖𝑟 ] = 𝑐𝑜𝑠 (\ )/𝜋 .
The issue is simply in taking this desired distribution over the directions and finding a correspondence to variables
that we can directly sample. Notice that, if we consider this scattering direction 𝑑 in spherical coordinates with
𝜌 = 1 for a unit sphere, we can explicitly construct formulas for angles that can be directly sampled:

𝑓1 (𝜙) =
1

2𝜋
, 𝑓2 (\ ) = 2𝜋

cos(\ )
𝜋

sin(\ ) = sin(2\ )

Notice that we can obtain both of these uniformly at random by doing the standard “inverse CDF" transforma-
tion. That is, for uniform variables 𝑢1, 𝑢2 ∼ 𝑈𝑛𝑖 𝑓 [0, 1], we have:

𝐹1 (𝜙) =
𝜙

2𝜋
, 𝐹2 (\ ) =

1
2
(1 − cos(2\ )) = 1 − 𝑐𝑜𝑠2 (\ )

=⇒ 𝐹−1
1 (𝜙) = 𝑢1 =

𝜙

2𝜋
=⇒ 𝜙 = 2𝜋𝑢1

𝐹−1
2 (\ ) = 𝑢2 = 1 − cos2 (\ ) =⇒ cos(\ ) =

√
1 − 𝑢2

Where we simply leave cos(\ ) as is, since all expressions in the following derivation use cos(\ ) instead of
directly using \ . Putting this back into rectalinear coordinates, we have:

𝑑𝑥 = cos(𝜙) sin(\ ) = cos(2𝜋𝑢1)2
√
𝑢2, 𝑑𝑦 = sin(𝜙) cos(\ ) = sin(2𝜋𝑢1)2

√
𝑢2, 𝑑𝑧 = cos(\ ) =

√
1 − 𝑢2

This gives us how to do sampling for random directions. Notice that, since these assume an axis aligned
hemisphere, for the actual sampling in the code, we have to do a local change of basis to align with the normal
vector at the point of intersection. In this transformed coordinate system we do the above sampling to get the
direction of the scattered ray.
On the flip side, to get the PDF of a given ray direction, we can simply use the fact that P[𝑑𝑖𝑟 ] = 𝑐𝑜𝑠 (\ )/𝜋 .

For a normalized direction 𝑑 and normal 𝑛, 𝑐𝑜𝑠 (\ ) = 𝑑 · 𝑛, meaning P[𝑑𝑖𝑟 ] = 𝑑 · 𝑛/𝜋 .
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2.5.2 MIS: Light. The derivation for sampling from the light follows a very similar derivation, where there are
two components: sampling and a PDF calculation. The light in the scene is a (finite) axis aligned plane, which
simplifies the derivations that follow. As a result, unlike random hemispheric scattering, sampling from the light
is super straightforward! Simply choose a point 𝑝 uniformly at random on the surface of the axis and draw a
vector 𝑝 − 𝑜 from the current intersection point to get that scattering direction. The PDF calculation is only
slightly more involved than the simple hemispheric scattering case. Notice that we wish to consider the PDF of
sampling from a small piece of area from the light source, as illustrated below:

Fig. 18. The goal is to formulate an analytic expression for the PDF of sampling directions with respect to the light source,
which has to do with the projections of small sampled pieces of areas onto the local hemispheres considered in the random
scattering case previously.

From this above diagram, we see that:

𝑑𝜔 =
𝑑𝐴 cos(\ )
𝑑 (𝑜, 𝑞)2

Where \ is once again the angle between the normal and this sampled direction, which happens to also be the
vector connecting 𝑜, 𝑞. 𝑑 (𝑜, 𝑞) is simply the Euclidean distance between the two. We wish to have P[𝑑𝜔] = P[𝑑𝐴],
that is to have the same density for sampling a patch of the hemisphere as the corresponding patch of the
light that projects onto it. The corresponding probabilities are directly related to the sampling we are explicitly
doing: P[𝑑𝜔] = P[𝑑𝑖𝑟 ]𝑑𝜔 and P[𝑑𝐴] = P[𝑞]𝑑𝐴, where 𝑞 is the connecting point we directly sample on the light.
Therefore, we wish to have:

P[𝑑𝜔] = P[𝑑𝐴] =⇒ P[𝑑𝑖𝑟 ]𝑑𝜔 = P[𝑑𝑖𝑟 ]𝑑𝐴 cos(\ )
𝑑 (𝑜, 𝑞)2 = P[𝑞]𝑑𝐴

=⇒ P[𝑑𝑖𝑟 ] = 𝑑 (𝑜, 𝑞)2

𝐴 cos(\ )

This gives the sampling PDF for any given ray of light, as desired. Therefore, simply by computing the distance
from the scattering point to a point on the light source and knowing the area of the light source, we can find the
PDF of a particular direction! Note that there is a subtlety here: if a ray of light never intersects the source of
light, the PDF for that direction is 0.

2.5.3 MIS: Glass Ball. The final part of the derivation is getting sampling from the glass ball in the scene. Observe
that sampling from a ball is equivalent to sampling a direction uniformly from the enveloping cone:
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Fig. 19. To sample from the glass ball, we wish to sample and compute the PDF of choosing a ray in enveloping cone of the
sphere. This means, rather than weighting directions uniformly in the range possible in the hemisphere, we do so in the
supported range by the enveloping cone.

This means the derivation provided in the random hemispheric directions extends naturally here, namely:

𝑢1 =
𝜙

2𝜋

𝑢2 =

∫
2𝜋 𝑓 (𝑡) sin(𝑡)𝑑𝑡 = 2𝜋𝐶 (1 − cos(\ ))

=⇒ cos(\ ) = 1 − 𝑢2

2𝜋𝐶
Where 𝑓 (𝑡) is a yet unknown weighting for sampling, which was previously the cosine weighting density.

Since we know that 𝑢1 = 2 should correspond to the extreme value for theta, we know that it should correspond
to cos(\𝑚𝑎𝑥 ) from the above diagram. This means we have:

cos(\ ) = 1 + 𝑢2 (cos(\𝑚𝑎𝑥 ) − 1)

Which gives us the sampling as before:

𝑑𝑥 = cos(𝜙) sin(\ ) = cos(2𝜋𝑢1)2
√

1 − 𝑧2, 𝑑𝑦 = sin(𝜙) cos(\ ) = sin(2𝜋𝑢1)2
√

1 − 𝑧2, 𝑑𝑧 = cos(\ ) = 1+𝑢2 (cos(\𝑚𝑎𝑥 )−1)

For an explicit value of cos(\𝑚𝑎𝑥 ), notice that we have a triangle in the previous diagram, which gives:

cos(\𝑚𝑎𝑥 ) =

√
1 − 𝑅2

| |𝑐 − 𝑝 | |2

The final part of this derivation is finding the corresponding PDF of this sampling distribution. Realize that
the PDF is uniform across the angles that are in the support. Therefore, we need to compute the total solid angle
that is spanned by this cone, where we find:

𝑠𝑜𝑙𝑖𝑑𝐴𝑛𝑔𝑙𝑒 =

∫ 2𝜋

0

∫ \𝑚𝑎𝑥

0
sin(\ )𝑑\𝑑𝜙 = 2𝜋 (1 − cos(\𝑚𝑎𝑥 ))

This means the PDF is simply:

1
2𝜋 (1 − cos(\𝑚𝑎𝑥 ))

Once again, as with the light discussion in the previous section, if the ray being considered does not intersect
the sphere, then the corresponding PDF is simply 0.
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2.6 Final Summary
Therefore, the final form of the algorithm looks as follows: for each pixel, shoot out 𝑁 rays, each of perhaps
differing numbers of scattering events, with each scatter following a sampling that is split between random
hemispheric scattering, being directed towards the light, and being directed towards the glass ball, weight each
sample by the corresponding sampling PDFs, and average them to get the final results. These results are shown
in the following section.

3 RESULTS
Here, we present the results of running the ray tracer, with and without importance sampling for the Cornell
Box. An initial scene of random balls was generated simply to test the basic functionality, but the crux of the
results are the Cornell Box:

Fig. 20. This is a very basic, single globally lit scene rendered with my ray tracer! This was simply used as a baseline to
ensure core functionality of the renderer worked
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Recall that we have a couple knobs we can tune for determining how we wish to do sampling in the scene,
specifically for choosing where in the scene to sample from. In particular, remember we have:

𝛼P𝑙𝑖𝑔ℎ𝑡 (𝑑𝑖𝑟 ) + 𝛽P𝑏𝑎𝑙𝑙 (𝑑𝑖𝑟 ) + (1 − 𝛼 − 𝛽)P𝑟𝑎𝑛𝑑𝑜𝑚 (𝑑𝑖𝑟 )

In the case of 𝛼 = 𝛽 = 0, we get the original case of no-MIS, and for 𝛼 = 1, 𝛽 = 0, we have only sampling from
the light source. We demonstrate how the behaviors improve by doing MIS, and how specifically that manifests
in the results below.

Fig. 21. This is the scene rendered without MIS (𝛼 = 𝛽 = 0). Notice that it captures a great deal of the desired details in the
lighting of the scene, particularly in the reflection of the walls onto the respective pieces of geometry in the scene, both
visible in the green left side of the prism and the general green “halo" in the back left corner. This is similarly visible in the
red highlights on the left side of the glass ball. On the other hand, clearly the picture is quite grainy, even having rendered
with 1000 samples per pixel, which takes roughly two hours to render on a Macbook Air. This graininess is what we sought
to fix with MIS, in the same number of samples per pixel.
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Fig. 22. Here, we only sample from the light source to contrast the result with the previous results. Notice that, since
there is no random scattering, two large differences emerge: the image is far crisper but all the nuances of scattering are no
longer in the picture. The latter point is most noticeable in the lack of green highlighting on the left side of the box and the
disappearance of the “halo" in that area. Similarly, there is no red reflection through the glass ball. To alleviate this total loss
of fidelity in reconstruction, we wish to do the full MIS, as shown in the following result. This result was also obtained using
1000 samples per pixel.
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Fig. 23. Here, we use 𝛼 = 0.4, 𝛽 = 0.3, meaning we wish to mix both the vanilla flat rendering in the pure light source
sampling case with the nuanced version in the hemispheric scattering case. Here, we in fact do get both desired features, in
that we have a crisp final render, while also retaining the green halo effect near the box and the red reflectance through the
glass ball. This, therefore, demonstrates how MIS can be used to greatly accelerate convergence of the render of a scene,
where we used 1000 samples per pixel once again here.
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Fig. 24. We can re-run the above experiments with lower samples per pixel to highlight the rate of convergence even more.
Here, we are doing no MIS with 50 samples per pixel and see a huge amount of grain in the rendered image.
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Fig. 25. On the other hand, running with MIS with 50 samples per pixel and produces a fairly reasonable image. This
demonstrates how much faster the convergence is using an MIS approach and what utility it provides for artists doing
protyping renders for films.

4 CONCLUSION
Overall, the use of MIS greatly improves the performance of ray tracing, by prioritizing directions that are
believed to either have slower convergence due to complex light interactions or those believed to have strong
impact on the final color. By combining PDFs appropriately, crisp images can be rendered in reasonable periods
of time. Further work can extend the developed ray tracer into the realms of bidirectional tracing and Metropolis
sampling of paths.
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